This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Investigation of Electrostatic Spray Painting Transfer Processes for Vehicle Coating

Journal Article
2019-01-1856
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 16, 2019 by SAE International in United States
Numerical Investigation of Electrostatic Spray Painting Transfer Processes for Vehicle Coating
Sector:
Citation: Pendar, M. and Pascoa, J., "Numerical Investigation of Electrostatic Spray Painting Transfer Processes for Vehicle Coating," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(2):747-754, 2020, https://doi.org/10.4271/2019-01-1856.
Language: English

References

  1. Toljic , N. , Adamiak , K. , Castle , G.S.P. , Kuo , H.H. , and Fan , C.T. 3D Numerical Model of the Electrostatic Coating Process with Moving Objects Using a Moving Mesh J. Electrostatics 70 499 504 2012 10.1016/j.elstat.2012.08.001
  2. Toljic , N. , Adamiak , K. , Castle , G.S.P. , Kuo , H.H. , and Fan , C.T. A Full 3D Numerical Model of the Industrial Electrostatic Coating Process for Moving Targets J. Electrostatics 71 299 304 2013 10.1016/j.elstat.2012.12.032
  3. Toljic , N. , Adamiak , K. , Castle , G.S.P. , Kuo , H.H. , and Fan , C.T. Three-Dimensional Numerical Studies on the Effect of the Particle Charge to Mass Ratio Distribution in the Electrostatic Coating Process J. Electrostatics 69 189 194 2011 10.1016/j.elstat.2011.03.008
  4. Domnick , J. , Scheibe , A. , and Ye , Q. The Simulation of the Electrostatic Spray Painting Process with High-Speed Rotary Bell Atomizers, Part I: Direct Charging Part. Part. Syst. Charact. 22 141 150 2005 10.1002/ppsc.200400968
  5. Domnick , J. , Scheibe , A. , Ye , Q. The Simulation of the Electrostatic Spray Painting Process with High-Speed Rotary Bell Atomizers, Part II: External Charging Part. Part. Syst. Charact. 23 408 2006 10.1002/ppsc.200601018
  6. Colbert , S.A. and Caircross , R.A. A Computer Simulation for Predicting Electrostatic Spray Coating Patterns Powder Technol. 151 77 86 2005 10.1016/j.powtec.2004.11.039
  7. Im , K.-S. , Lai , M.-C. , Yu , S.-T.J. , and Matheson , R.R. Simulation of Spray Transfer Processes in Electrostatic Rotary Bell Sprayer J. Fluids Eng. 126 449 456 2004 10.1115/1.1758263
  8. Ye , Q. , Steigleder , T. , Scheibe , A. , and Domnick , J. Numerical Simulation of the Electrostatic Powder Coating Process with a Corona Spray Gun J. Electrostatics 54 189 205 2002 10.1016/S0304-3886(01)00181-4
  9. Viti , V. , Kulkarni , J. CFD Analysis of the Electrostatic Spray Painting Process with a Rotating Bell Cup ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems Orlando, Florida, USA 2008
  10. Bӧttner , C.-U. and Sommerfeld , M. Numerical Calculation of Electrostatic Powder Painting Using the Euler/Lagrange Approach Powder Technol. 125 206 216 2002 10.1016/S0032-5910(01)00508-3
  11. Yasumura , K. , Saito , Y. , Shoji , M. , Matsushita , Y. et al. Development of Quantitative Evaluation Method for Droplet Behavior with High Speed Rotary Bell-Cup Atomizer Kagaku Kogaku Ronbunshu. 37 296 304 2011a 10.1252/kakoronbunshu.37.296
  12. Tanasawa , Y. , Miyasaka , Y. , and Umehara , M. Effect of Shape of Rotating Disks and Cups on Liquid Atomization Proceedings of the 1st International Congress on Liquid Atomization and Spray Systems 165 172 1978
  13. Panneton , B. Geometry and Performance of a Rotary Cup Atomizer Am. Soc. Agric. Eng. 18 435 441 2002 10.13031/2013.8745
  14. Kazama , S. Steady-State Paint Flow under High Centrifugal Force: Atomization in Spray Painting JSAE Rev. 24 489 494 2003 10.1016/S0389-4304(03)00075-4
  15. Dominick , J. and Thieme , M. Atomization Characteristics of High-Speed Rotary Bell Atomizers Atomization and Sprays 16 857 874 2006
  16. Pendar , M.R. and Roohi , E. Cavitation Characteristics around a Sphere: An LES Investigation Int. J. Multiphas Flow. 98 1 23 2018 10.1016/j.ijmultiphaseflow.2017.08.013
  17. Pendar , M.R. and Roohi , E. Investigation of Cavitation around 3D Hemispherical Head-Form Body and Conical Cavitators Using Different Turbulence and Cavitation Models International Journal of Ocean Engineering 112 287 306 2016 10.1016/j.oceaneng.2015.12.010
  18. Mushyam , A. , Rodrigues , F. , and Pascoa , J.C. A Plasma-Fluid Model for EHD Flow in DBD Actuators and Experimental Validation International Journal for Numerical Methods in Fluids 90 115 139 2019 10.1002/fld.4714
  19. Abdollahzadeh , M. , Páscoa , J.C. , and Oliveira , P. Comparison of DBD Plasma Actuators Flow Control Authority in Different Modes of Actuation Aerospace Science and Technology 78 183 196 2018 10.1016/j.ast.2018.04.013
  20. Fureby , C. and Grinstein , F. Large Eddy Simulation of High-Reynolds Number Free and Wall-Bounded Flows J. Comput. Phys. 181 68 97 2002 10.1006/jcph.2002.7119
  21. Ghosal , S. An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence J. Comput. Phys. 125 187 206 1996 10.1006/jcph.1996.0088
  22. Martinez , L.A. 2013
  23. Stevenin , C. , Béreaux , Y. , Charmeau , J.-Y. , and Balcaen , J. Shaping Air Flow Characteristics of a High-Speed Rotary-Bell Sprayer for Automotive Painting Processes J. Fluids Eng. 137 111304 2015 10.1115/1.4030703
  24. SAMES Technology http://www.sames-kremlin.com
  25. Stalling , D. and Hege , H.-C. LIC on Surfaces Texture Synthesis with Line Integral Convolution 51 64 1997 10.1.1.52.7328

Cited By