This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Study of Optimization Strategy for Vehicle Restraint System Design
Technical Paper
2019-01-1072
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Vehicle restraint systems are optimized to maximize occupant safety and achieve high safety ratings. The optimization formulation often involves the inclusion or exclusion of restraint features as discrete design variables, as well as continuous restraint design variables such as airbag firing time, airbag vent size, inflator power level, etc. The optimization problem is constrained by injury criteria such as Head Injury Criterion (HIC), chest deflection, chest acceleration, neck tension/compression, etc., which ensures the vehicle meets or exceeds all Federal Motor Vehicle Safety Standard (FMVSS) requirements. Typically, Genetic Algorithms (GA) optimizations are applied because of their capability to handle discrete and continuous variables simultaneously and their ability to jump out of regions with multiple local optima, particularly for this type of highly non-linear problems. However, the computational time for the GA based optimization is often lengthy because of the relatively slow convergence comparing to derivative based algorithms. This study compares GA and multi-strategy optimization algorithms on driver’s side full frontal 90-degree rigid barrier impact MADYMO simulations at different impact speeds with belted and unbelted occupants. The multi-strategy optimization algorithms are sophisticated combinations of GA, gradient-based algorithms, and Response Surface Modeling (RSM). Design engineers are given conclusions and suggestions based on the comparison of optimization performance of aforementioned algorithms.
Recommended Content
Technical Paper | Simplified Models for Optimization of Curtain Air Bag for US NCAP |
Technical Paper | The Effect of Pregnant Occupant Position and Belt Placement on the Risk of Fetal Injury |
Technical Paper | Design of Experiments in Occupant Simulation |
Authors
Topic
Citation
Li, G., Xue, Z., Chuang, C., and Pline, K., "Study of Optimization Strategy for Vehicle Restraint System Design," SAE Technical Paper 2019-01-1072, 2019, https://doi.org/10.4271/2019-01-1072.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- www.esteco.com
- Goldberg , D.E. Genetic Algorithms in Search Optimization and Machine Learning Addison Wesley 1989 41 0201157675
- Powell , M.J.D. A Fast Algorithm for Nonlinearly Constraint Optimization Calculations Numerical Analysis Watson, G.A. 630 Springer 1978
- Deb , K. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems Evolutionary Computation 7 3 205 230 1999 10.1162/evco.1999.7.3.205
- Poles , S. , Fu , Y. , Rigoni , E. The Effect of Initial Population Sampling on the Convergence of Multi-Objective Genetic Algorithms MOPGP’06: 7th International Conference on Multi-Objective Programming and Goal Programming 2006 10.1007/978-3-540-85646-7_12
- Deb , K. , Pratap , A. , Agarwal , S. , and Meyarivan , T. A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II IEEE Transaction on Evolutionary Computation 6 2 181 197 2002 10.1109/4235.996017
- Xue , Z. , Parashar , S. , Li , G. , and Fu , Y. Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design SAE Int. J. Passeng. Cars - Mech. Syst. 5 1 2012 10.4271/2012-01-0578
- Shi , L. , Fu , Y. , Yang , R.J. , Wang , B.P. et al. Selection of Initial Designs for Multi-Objective Optimization Using Classification and Regression Tree Structural and Multidisciplinary Optimization 48 6
- Zheng , K. , Yang , R.J. , Xu , H. , and Hu , J. A New Distribution Metric for Comparing Pareto Optimal Solutions Structural and Multidisciplinary Optimization 55 1 53 62
- Liu , Z. , Zhu , P. , Chen , W. , and Yang , R.J. Improved Particle Swarm Optimization Algorithm Using Design of Experiment and Data Mining Techniques Structural and Multidisciplinary Optimization 52 4