This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

Journal Article
2019-01-0001
ISSN: 2641-9637, e-ISSN: 2641-9645
Published January 15, 2019 by SAE International in United States
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in
                    a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry
                    Generation and a Supercomputer
Citation: Pei, Y., Pal, P., Zhang, Y., Traver, M. et al., "CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(1):166-179, 2019, https://doi.org/10.4271/2019-01-0001.
Language: English

References

  1. OPEC , “2014 World Oil Outlook,” Organization of the Petroleum Exporting Countries (OPEC), Vienna, Austria, 2014.
  2. Kalghatgi, G., Risberg, P., and Ångström, H. , “Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion,” SAE Technical Paper 2006-01-3385 , 2006, doi:10.4271/2006-01-3385.
  3. Kalghatgi, G., Risberg, P., and Ångström, H. , “Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel,” SAE Technical Paper 2007-01-0006 , 2007, doi:10.4271/2007-01-0006.
  4. Kalghatgi, G., Hildingsson, L., and Johansson, B. , “Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels,” J. Eng. Gas Turbines Power 132(9), 2009, doi:092803, 10.1115/1.4000602.
  5. Zhang, Y., Voice, A., Tzanetakis, T., Traver, M. et al. , “An Evaluation of Combustion and Emissions Performance with Low Cetane Naphtha Fuels in a Multi-cylinder Heavy-Duty Diesel Engine,” J. Eng. Gas Turbines Power 138(10):102805, 2016, doi:10.1115/1.4032879.
  6. Zhang, Y., Kumar, P., Traver, M., and Cleary, D. , “Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine,” SAE Int. J. Engines 9(2):1021-1035, 2016, doi:10.4271/2016-01-0764.
  7. Pei, Y., Zhang, Y., Kumar, P., Traver, M. et al. , “CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel,” SAE Int. J. Commer. Veh. 10(2):532-546, 2017, doi:10.4271/2017-01-0550.
  8. Zhang, Y., Kumar, P., Pei, Y., Traver, M., and Cleary, D. , “An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine,” SAE Technical Paper 2018-01-0226 , 2018, doi:10.4271/2018-01-0226.
  9. Senecal, P.K. and Reitz, R.D. , “Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling,” SAE Technical Paper 2000-01-1890 , 2000, doi:10.4271/2000-01-1890.
  10. Probst, D.M., Senecal, P.K., Qian, P.Z., Xu, M.X. et al. , “Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD,” in Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference, ICEF2016-9345, Greenville, SC, Oct. 2016.
  11. Wickman, D., Senecal, P., and Reitz, R. , “Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling,” SAE Technical Paper 2001-01-0547 , 2001, doi:10.4271/2001-01-0547.
  12. Wickman, D., Yun, H., and Reitz, R. , “Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion,” SAE Technical Paper 2003-01-0348 , 2003, doi:10.4271/2003-01-0348.
  13. Park, S.W. , “Optimization of Combustion Chamber Geometry for Stoichiometric Diesel Combustion Using a Micro Genetic Algorithm,” Fuel Processing Technol. 91:1742-1752, 2010, doi:10.1016/j.fuproc.2010.07.015.
  14. Broatch, A., Novella, R., Soriano, J., Pal, P. et al. , "Numerical Methodology of Optimization of Compression-Ignited Engines Considering Combustion Noise Control", SAE Technical Paper 2018-01-0193 , 2018, doi: 10.4271/2018-01-0193.
  15. Lee, S. and Park, S.W. , “Optimization of the Piston Bowl Geometry and the Operating Conditions of a Gasoline-Diesel Dual-Fuel Engine Based on a Compression Ignition Engine,” Energy 121:433-448, 2017, doi:10.1016/j.energy.2017.01.026.
  16. CAESES , https://www.caeses.com/, 2018.
  17. Pei, Y., Torelli, R., Tzanetakis, T., Zhang, Y. et al. , “Modeling the Fuel Spray of a High Reactivity Gasoline Under Heavy-Duty Diesel Engine Conditions,” in ASME 2017 Internal Combustion Engine Division Fall Technical Conference, ASME-ICEF2017-3530, 2017, V002T06A002.
  18. Tang, M., Pei, Y., Zhang, Y., Traver, M. et al. , “Numerical Investigation of Fuel Effects on Soot Emissions at Heavy-Duty Diesel Engine Conditions,” in ASME 2018 Internal Combustion Engine Division Fall Technical Conference, ASME-ICEF2018-9696, San Diego, 2018.
  19. “CONVERGE Theory Manual v2.3.28,” Convergent Science, Inc., Middleton, WI, 2018.
  20. Senecal, P.K., Pomraning, E., Richards, K.J., Briggs, T. et al. , “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry,” SAE Technical Paper 2003-01-1043 , 2003, doi:10.4271/2003-01-1043.
  21. Babajimopoulos, A., Assanis, D.N., Flowers, D.L., Aceves, S.M. et al. , “A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines,” Int. J. Engine Res. 6(5):497-512, 2005, doi:10.1243/146808705X30503.
  22. Liu, Y.-D., Jia, M., Xie, M.-Z., and Pang, B. , “Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semi-Decoupling Methodology,” Energy and Fuels 26(12):7069-7083, 2012, doi:10.1021/ef301242b.
  23. Reitz, R.D. , “Modeling Atomization Processes in High Pressure Vaporizing Sprays,” Atomization Spray Technol. 3:309-337, 1987.
  24. Patterson, M.A. and Reitz, R.D. , “Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions,” SAE Technical Paper 980131 , 1998, doi:10.4271/980131.
  25. Schmidt, D.P. and Rutland, C.J. , “A New Droplet Collision Algorithm,” J. Comput. Phys. 164(1):62-80, 2000, doi:10.1006/jcph.2000.6568.
  26. Frossling, N. , “Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow,” N.A.C.A. 168:AD-B189, 1956.
  27. Aspen HYSYS , http://www.aspentech.com/products/aspen-hysys/, 2016.
  28. Hiroyasu, H. and Kadota, T. , “Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines,” SAE Technical Paper 760129 , 1976, doi:10.4271/760129.
  29. Golovitchev, V. , http://www.tfd.chalmers.se/~valeri/MECH.html.
  30. Pei, Y., Som, S., Pomraning, E., Senecal, P.K. et al. , “Large Eddy Simulation of a Reacting Spray Flame with Multiple Realizations under Compression Ignition Engine Conditions,” Combust. Flame 162(12):4442-4455, 2015, doi:10.1016/j.combustflame.2015.08.010.
  31. Pei, Y., Hawkes, E.R., Kook, S., Goldin, G.M. et al. , “Modelling n-Dodecane Spray and Combustion with the Transported Probability Density Function Method,” Combust. Flame 162(5):2006-2019, 2015, doi:10.1016/j.combustflame.2014.12.019.
  32. Pei, Y., Hawkes, E.R., and Kook, S. , “Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions,” Proc. Combust. Inst. 34(2):3039-3047, 2013, doi:10.1016/j.proci.2012.07.033.
  33. Kundu, P., Pei, Y., Wang, M., Mandhapati, R. et al. , “Evaluation of Turbulence-Chemistry Interaction under Diesel Engine Conditions with Multi-Flamelet RIF Model,” Atomizat. Sprays 24(9):779-800, 2014, doi:10.1615/AtomizSpr.2014010506.
  34. Pal, P., Keum, S., and Im, H.G. , “Assessment of Flamelet versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines,” Int. J. Engine Res. 17(3):280-290, 2016, doi:10.1177/1468087415571006.
  35. Pal, P. , “Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications,” Ph.D. dissertation, University of Michigan-Ann Arbor, 2016, http://hdl.handle.net/2027.42/120735.
  36. Quan, S., Senecal, P.K., Pomraning, E., Xue, Q. et al. , “A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays,” in Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference, ICEF2016-9390, Greenville, SC, Oct. 2016.
  37. Kazakov, A. and Frenklach, M. , “Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames,” Combust. Flame 114:484-501, 1998, doi:10.1016/S0010-2180(97)00322-2.
  38. Kodavasal, J., Pei, Y., Harms, K., Ciatti, S. et al. , “Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer,” SAE Technical Paper 2016-01-0602 , 2016, doi:10.4271/2016-01-0602.
  39. Pal, P., Probst, D., Pei, Y., Zhang, Y. et al. , “Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis,” SAE Int. J. Fuels Lubr. 10(1):56-68, 2017, doi:10.4271/2017-01-0578.
  40. Moiz, A.A., Pal, P., Probst, D., Pei, Y. et al. , “A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing,” SAE Technical Paper 2018-01-0190 , 2018, doi:10.4271/2017-01-0578.

Cited By