This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

Journal Article
2019-01-0001
ISSN: 2641-9645, e-ISSN: 2641-9645
Published January 15, 2019 by SAE International in United States
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in
                    a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry
                    Generation and a Supercomputer
Citation: Pei, Y., Pal, P., Zhang, Y., Traver, M. et al., "CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(1):166-179, 2019, https://doi.org/10.4271/2019-01-0001.
Language: English

References

  1. OPEC 2014
  2. Kalghatgi , G. , Risberg , P. , and Ångström , H. Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 10.4271/2006-01-3385
  3. Kalghatgi , G. , Risberg , P. , and Ångström , H. Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel SAE Technical Paper 2007-01-0006 2007 10.4271/2007-01-0006
  4. Kalghatgi , G. , Hildingsson , L. , and Johansson , B. Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels J. Eng. Gas Turbines Power 132 9 2009 092803 10.1115/1.4000602
  5. Zhang , Y. , Voice , A. , Tzanetakis , T. , Traver , M. et al. An Evaluation of Combustion and Emissions Performance with Low Cetane Naphtha Fuels in a Multi-cylinder Heavy-Duty Diesel Engine J. Eng. Gas Turbines Power 138 10 102805 2016 10.1115/1.4032879
  6. Zhang , Y. , Kumar , P. , Traver , M. , and Cleary , D. Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Int. J. Engines 9 2 1021 1035 2016 10.4271/2016-01-0764
  7. Pei , Y. , Zhang , Y. , Kumar , P. , Traver , M. et al. CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel SAE Int. J. Commer. Veh. 10 2 532 546 2017 10.4271/2017-01-0550
  8. Zhang , Y. , Kumar , P. , Pei , Y. , Traver , M. , and Cleary , D. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 10.4271/2018-01-0226
  9. Senecal , P.K. and Reitz , R.D. Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling SAE Technical Paper 2000-01-1890 2000 10.4271/2000-01-1890
  10. Probst , D.M. , Senecal , P.K. , Qian , P.Z. , Xu , M.X. et al. Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference Greenville, SC 2016
  11. Wickman , D. , Senecal , P. , and Reitz , R. Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling SAE Technical Paper 2001-01-0547 2001 10.4271/2001-01-0547
  12. Wickman , D. , Yun , H. , and Reitz , R. Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion SAE Technical Paper 2003-01-0348 2003 10.4271/2003-01-0348
  13. Park , S.W. Optimization of Combustion Chamber Geometry for Stoichiometric Diesel Combustion Using a Micro Genetic Algorithm Fuel Processing Technol. 91 1742 1752 2010 10.1016/j.fuproc.2010.07.015
  14. Broatch , A. , Novella , R. , Soriano , J. , Pal , P. et al. Numerical Methodology of Optimization of Compression-Ignited Engines Considering Combustion Noise Control SAE Technical Paper 2018-01-0193 2018 10.4271/2018-01-0193
  15. Lee , S. and Park , S.W. Optimization of the Piston Bowl Geometry and the Operating Conditions of a Gasoline-Diesel Dual-Fuel Engine Based on a Compression Ignition Engine Energy 121 433 448 2017 10.1016/j.energy.2017.01.026
  16. CAESES https://www.caeses.com/ 2018
  17. Pei , Y. , Torelli , R. , Tzanetakis , T. , Zhang , Y. et al. Modeling the Fuel Spray of a High Reactivity Gasoline Under Heavy-Duty Diesel Engine Conditions ASME 2017 Internal Combustion Engine Division Fall Technical Conference 2017 V002T06A002
  18. Tang , M. , Pei , Y. , Zhang , Y. , Traver , M. et al. Numerical Investigation of Fuel Effects on Soot Emissions at Heavy-Duty Diesel Engine Conditions ASME 2018 Internal Combustion Engine Division Fall Technical Conference San Diego 2018
  19. 2018
  20. Senecal , P.K. , Pomraning , E. , Richards , K.J. , Briggs , T. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 10.4271/2003-01-1043
  21. Babajimopoulos , A. , Assanis , D.N. , Flowers , D.L. , Aceves , S.M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines Int. J. Engine Res. 6 5 497 512 2005 10.1243/146808705X30503
  22. Liu , Y.-D. , Jia , M. , Xie , M.-Z. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semi-Decoupling Methodology Energy and Fuels 26 12 7069 7083 2012 10.1021/ef301242b
  23. Reitz , R.D. Modeling Atomization Processes in High Pressure Vaporizing Sprays Atomization Spray Technol. 3 309 337 1987
  24. Patterson , M.A. and Reitz , R.D. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions SAE Technical Paper 980131 1998 10.4271/980131
  25. Schmidt , D.P. and Rutland , C.J. A New Droplet Collision Algorithm J. Comput. Phys. 164 1 62 80 2000 10.1006/jcph.2000.6568
  26. Frossling , N. 1956
  27. Aspen HYSYS http://www.aspentech.com/products/aspen-hysys/ 2016
  28. Hiroyasu , H. and Kadota , T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines SAE Technical Paper 760129 1976 10.4271/760129
  29. Golovitchev , V. http://www.tfd.chalmers.se/~valeri/MECH.html
  30. Pei , Y. , Som , S. , Pomraning , E. , Senecal , P.K. et al. Large Eddy Simulation of a Reacting Spray Flame with Multiple Realizations under Compression Ignition Engine Conditions Combust. Flame 162 12 4442 4455 2015 10.1016/j.combustflame.2015.08.010
  31. Pei , Y. , Hawkes , E.R. , Kook , S. , Goldin , G.M. et al. Modelling n-Dodecane Spray and Combustion with the Transported Probability Density Function Method Combust. Flame 162 5 2006 2019 2015 10.1016/j.combustflame.2014.12.019
  32. Pei , Y. , Hawkes , E.R. , and Kook , S. Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions Proc. Combust. Inst. 34 2 3039 3047 2013 10.1016/j.proci.2012.07.033
  33. Kundu , P. , Pei , Y. , Wang , M. , Mandhapati , R. et al. Evaluation of Turbulence-Chemistry Interaction under Diesel Engine Conditions with Multi-Flamelet RIF Model Atomizat. Sprays 24 9 779 800 2014 10.1615/AtomizSpr.2014010506
  34. Pal , P. , Keum , S. , and Im , H.G. Assessment of Flamelet versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines Int. J. Engine Res. 17 3 280 290 2016 10.1177/1468087415571006
  35. Pal , P. Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications 2016 http://hdl.handle.net/2027.42/120735
  36. Quan , S. , Senecal , P.K. , Pomraning , E. , Xue , Q. et al. A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference Greenville, SC Oct. 2016
  37. Kazakov , A. and Frenklach , M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combust. Flame 114 484 501 1998 10.1016/S0010-2180(97)00322-2
  38. Kodavasal , J. , Pei , Y. , Harms , K. , Ciatti , S. et al. Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer SAE Technical Paper 2016-01-0602 2016 10.4271/2016-01-0602
  39. Pal , P. , Probst , D. , Pei , Y. , Zhang , Y. et al. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis SAE Int. J. Fuels Lubr. 10 1 56 68 2017 10.4271/2017-01-0578
  40. Moiz , A.A. , Pal , P. , Probst , D. , Pei , Y. et al. A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing SAE Technical Paper 2018-01-0190 2018 10.4271/2017-01-0578

Cited By