This content is not included in your SAE MOBILUS subscription, or you are not logged in.

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

Journal Article
2018-01-1418
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine
Sector:
Citation: Kim, D., Zhang, Y., Clark, L., Kook, S. et al., "In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine," SAE Int. J. Engines 11(6):1007-1022, 2018, https://doi.org/10.4271/2018-01-1418.
Language: English

References

  1. Lineman, M., Do, Y., Kim, J.Y., and Joo, G.-J. , “Talking about Climate Change and Global Warming,” PLOS ONE 10(9):e0138996, 2015, doi:10.1371/journal.pone.0138996.
  2. Kakouei, A., Vatani, A., and Bin, I.A.K. , “An Estimation of Traffic Related CO2 Emissions from Motor Vehicles in the Capital City of, Iran,” Iranian Journal of Environmental Health Science & Engineering 9(1):13, 2012, doi:10.1186/1735-2746-9-13.
  3. United Sates Environmental Protection Agency , “Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2016,” 2016, doi:10.1088/1751-8113/44/8/085201.
  4. Zhao, F., Lai, M.-C., and Harrington, D. , “Automotive Spark-Ignited Direct-Injection Gasoline Engines,” Progress in Energy and Combustion Science 25(5):437-562, 1999, doi:10.1016/S0360-1285(99)00004-0.
  5. Drake, M.C. and Haworth, D.C. , “Advanced Gasoline Engine Development Using Optical Diagnostics and Numerical Modeling,” Proceedings of the Combustion Institute 31(1):99-124, 2007, doi:10.1016/j.proci.2006.08.120.
  6. Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T. et al. , “Development of Gasoline Direct Injection Engine,” SAE Technical Paper 970541 , 1997, doi:10.4271/970541.
  7. Najjar, Y.S.H. , “Comparison of Performance of a Greener Direct-Injection Stratified-Charge (DISC) Engine with a Spark-Ignition Engine Using a Simplified Model,” Energy 36(7):4136-4143, 2011, doi:10.1016/j.energy.2011.04.031.
  8. Sementa, P., Maria Vaglieco, B., and Catapano, F. , “Thermodynamic and Optical Characterizations of a High Performance GDI Engine Operating in Homogeneous and Stratified Charge Mixture Conditions Fueled with Gasoline and Bio-Ethanol,” Fuel 96:204-219, 2012, doi:10.1016/j.fuel.2011.12.068.
  9. Chincholkar, S.P. and Suryawanshi, J.G. , “Gasoline Direct Injection: An Efficient Technology,” Energy Procedia 90:666-672, 2015, doi:10.1016/j.egypro.2016.11.235.
  10. Liang, B., Ge, Y., Tan, J., Han, X. et al. , “Comparison of PM Emissions from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle Measured by Electrical Low Pressure Impactor (ELPI) with Two Fuels: Gasoline and M15 Methanol Gasoline,” Journal of Aerosol Science 57:22-31, 2013, doi:10.1016/j.jaerosci.2012.11.008.
  11. Saliba, G., Saleh, R., Zhao, Y., Presto, A.A. et al. , “Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts,” Environmental Science & Technology 51(11):6542-6552, 2017, doi:10.1021/acs.est.6b06509.
  12. Pöschl, U. , “Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects,” Angewandte Chemie International Edition 44(46):7520-7240, 2005, doi:10.1002/anie.200501122.
  13. Oberdörster, G. , “Pulmonary Effects of Inhaled Ultrafine Particles,” International Archives of Occupational and Environmental Health 74(1):1-8, 2000, doi:10.1007/s004200000185.
  14. Kang, M., Lim, C.-H., and Han, J.-H. , “Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared with or without Dispersing Sonication,” Toxicological Research 29(2):121-127, 2013, doi:10.5487/TR.2013.29.2.121.
  15. European Commission , “Commission regulation (EC) No 692/2008 of 18 July 2008,” Official Journal of the European Union, 2008.
  16. Chan, T.W., Meloche, E., Kubsh, J., Rosenblatt, D. et al. , “Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions from a Gasoline Direct Injection Vehicle,” SAE Int. J. Fuels Lubr. 5(3):1277-1290, 2012, doi:10.4271/2012-01-1727.
  17. He, X., Ratcliff, M.A., and Zigler, B.T. , “Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions,” Energy & Fuels 26(4):2014-2027, 2012, doi:10.1021/ef201917p.
  18. Überall, A., Otte, R., Eilts, P., and Krahl, J. , “A Literature Research about Particle Emissions from Engines with Direct Gasoline Injection and the Potential to Reduce these Emissions,” Fuel 147:203-207, 2015, doi:10.1016/j.fuel.2015.01.012.
  19. Choi, K., Kim, J., Ko, A., Myung, C. et al. , “Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine,” SAE Technical Paper 2011-28-0022 , 2011, doi:10.4271/2011-28-0022.
  20. Wang, C., Xu, H., Herreros, J.M., Wang, J. et al. , “Impact of Fuel and Injection System on Particle Emissions from a GDI Engine,” Applied Energy 132:178-191, 2014, doi:10.1016/j.apenergy.2014.06.012.
  21. Hedge, M., Weber, P., Gingrich, J., Alger, T. et al. , “Effect of EGR on Particle Emissions from a GDI Engine,” SAE Int. J. Engines 4(1):650-666, 2011, doi:10.4271/2011-01-0636.
  22. de Francqueville, L., Bruneaux, G., and Thirouard, B. , “Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method,” SAE Int. J. Engines 3(1):163-182, 2010, doi:10.4271/2010-01-0346.
  23. Stevens, E. and Steeper, R. , “Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation,” SAE Technical Paper 2001-01-12 , 2001, doi:10.4271/2001-01-1203.
  24. Drake, M.C., Fansler, T.D., Solomon, A.S., and Szekely, G.A. , “Piston Fuel Films as a Source of Smoke and Hydrocarbon Emissions from a Wall-Controlled Spark-Ignited Direct-Injection Engine,” SAE Technical Paper 2003-01-0547 , 2003, doi:10.4271/2003-01-0547.
  25. Luo, Y., Zhu, L., Fang, J., Zhuang, Z. et al. , “Size Distribution, Chemical Composition and Oxidation Reactivity of Particulate Matter from Gasoline Direct Injection (GDI) Engine Fueled with Ethanol-Gasoline Fuel,” Applied Thermal Engineering 89:647-655, 2015, doi:10.1016/j.applthermaleng.2015.06.060.
  26. Graves, B.M., Koch, C.R., and Olfert, J.S. , “Morphology and Volatility of Particulate Matter Emitted from a Gasoline Direct Injection Engine Fuelled on Gasoline and Ethanol Blends,” Journal of Aerosol Science 105:166-178, 2017, doi:10.1016/j.jaerosci.2016.10.013.
  27. Park, C., Lee, S., and Yi, U. , “Effects of Engine Operating Conditions on Particle Emissions of Lean-Burn Gasoline Direct-Injection Engine,” Energy 115:1148-1155, 2016, doi:10.1016/j.energy.2016.09.051.
  28. Farron, C., Matthias, N., Foster, D.E., Andrie, M. et al. , “Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine,” SAE Technical Paper 2011-01-1220 , 2011, doi:10.4271/2011-01-1220.
  29. Wang, S.C. and Flagan, R.C. , “Scanning Electrical Mobility Spectrometer,” Aerosol Science and Technology 13(2):230-240, 1990, doi:10.1080/02786829008959441.
  30. Park, J., Yoon, J., Song, S., and Chun, K.M. , “Analysis of Fractal Particles from Diesel Exhaust Using a Scanning-Mobility Particle Sizer and Laser-Induced Incandescence,” Journal of Aerosol Science 41(6):531-540, 2010, doi:10.1016/j.jaerosci.2010.03.003.
  31. Wu, Z., Song, C., Lv, G., Pan, S. et al. , “Morphology, Fractal Dimension, Size and Nanostructure of Exhaust Particles from a Spark-Ignition Direct-Injection Engine Operating at Different Air-Fuel Ratios,” Fuel 185:709-717, 2016, doi:10.1016/j.fuel.2016.08.025.
  32. Gaddam, C.K. and Vander Wal, R.L. , “Physical and Chemical Characterization of SIDI Engine Particulates,” Combustion and Flame 160(11):2517-2528, 2013, doi:10.1016/j.combustflame.2013.05.025.
  33. Bogarra, M., Herreros, J.M., Tsolakis, A., York, A.P.E. et al. , “Influence of on-Board Produced Hydrogen and Three Way Catalyst on Soot Nanostructure in Gasoline Direct Injection Engines,” Carbon 120:326-236, 2017, doi:10.1016/j.carbon.2017.05.049.
  34. Miyashita, K., Fukuda, Y., Shiozaki, Y., Kondo, K. et al. , “TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings,” SAE Technical Paper 2015-01-1872 , 2015, doi:10.4271/2015-01-1872.
  35. Seong, H., Lee, K., and Choi, S. , “Effects of Engine Operating Parameters on Morphology of Particulates from a Gasoline Direct Injection (GDI) Engine,” SAE Technical Paper 2013-01-2574 , 2013, doi:10.4271/2013-01-2574.
  36. Seong, H., Choi, S., and Lee, K. , “Examination of Nanoparticles from Gasoline Direct-Injection (GDI) Engines Using Transmission Electron Microscopy (TEM),” International Journal of Automotive Technology 15(2):175-181, 2014, doi:10.1007/s12239-014-0019-5.
  37. Barone, T.L., Storey, J.M.E., Youngquist, A.D., and Szybist, J.P. , “An Analysis of Direct-Injection Spark-Ignition (DISI) Soot Morphology,” Atmospheric Environment 49:268-274, 2012, doi:10.1016/j.atmosenv.2011.11.047.
  38. Lee, K.O., Seong, H., Sakai, S., Hageman, M.D. et al. , “Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends,” SAE Technical Paper 2013-24-0185 , 2013, doi:10.4271/2013-24-0185.
  39. Tree, D.R. and Svensson, K.I. , “Soot Processes in Compression Ignition Engines,” Progress in Energy and Combustion Science 33(3):272-309, 2007, doi:10.1016/j.pecs.2006.03.002.
  40. Stanmore, B., Brilhac, J., and Gilot, P. , “The Oxidation of Soot: A Review of Experiments, Mechanisms and Models,” Carbon 39(15):2247-2268, 2001, doi:10.1016/S0008-6223(01)00109-9.
  41. Clark, L.G., Kook, S., Chan, Q.N., and Hawkes, E.R. , “Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis,” SAE Technical Paper 2016-01-2162 , 2016, doi:10.4271/2016-01-2162.
  42. Chan, Q.N., Bao, Y., and Kook, S. , “Effects of Injection Pressure on the Structural Transformation of Flash-Boiling Sprays of Gasoline and Ethanol in a Spark-Ignition Direct-Injection (SIDI) Engine,” Fuel 130:228-240, 2014, doi:10.1016/j.fuel.2014.04.015.
  43. Clark, L.G., Kook, S., Chan, Q.N., and Hawkes, E.R. , “Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine,” SAE Technical Paper 2017-01-0657 , 2017, doi:10.4271/2017-01-0657.
  44. Dec, J.E., Zur Loye, A.O., and Siebers, D.L. , “Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging,” SAE Technical Paper 910224 , 1991, doi:10.4271/910224.
  45. Kook, S., Zhang, R., Szeto, K., Pickett, L.M. et al. , “In-Flame Soot Sampling and Particle Analysis in a Diesel Engine,” SAE Int. J. Fuels Lubr. 6(1):80-97, 2013, doi:10.4271/2013-01-0912.
  46. Zhang, Y., Zhang, R., and Kook, S. , “Nanostructure Analysis of In-Flame Soot Particles under the Influence of Jet-Jet Interactions in a Light-Duty Diesel Engine,” SAE Int. J. Engines 8(5):2213-2226, 2015, doi:10.4271/2015-24-2444.
  47. Zhang, Y., Zhang, R., Rao, L., Kim, D. et al. , “The Influence of a Large Methyl Ester on in-Flame Soot Particle Structures in a Small-Bore Diesel Engine,” Fuel 194:423-435, 2017, doi:10.1016/j.fuel.2017.01.044.
  48. Zhang, Y., Kim, D., Rao, L., Zhang, R. et al. , “The Soot Particle Formation Process inside the Piston Bowl of a Small-Bore Diesel Engine,” Combustion and Flame 185:278-291, 2017, doi:10.1016/j.combustflame.2017.07.028.
  49. Zhang, R. and Kook, S. , “Structural Evolution of Soot Particles during Diesel Combustion in a Single-Cylinder Light-Duty Engine,” Combustion and Flame 162(6):2720-2728, 2015, doi:10.1016/j.combustflame.2015.04.008.
  50. Talbot, L., Cheng, R.K., Schefer, R.W., and Willis, D.R. , “Thermophoresis of Particles in a Heated Boundary Layer,” Journal of Fluid Mechanics 101(4):737, 1980, doi:10.1017/S0022112080001905.
  51. Dobbins, R.A. and Megaridis, C.M. , “Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling,” Langmuir 3(2):254-259, 1987, doi:10.1021/la00074a019.
  52. Stojkovic, B.D., Fansler, T.D., Drake, M.C., and Sick, V. , “High-Speed Imaging of OH* and Soot Temperature and Concentration in a Stratified-Charge Direct-Injection Gasoline Engine,” Proceedings of the Combustion Institute 30(2):2657-2665, 2005, doi:10.1016/j.proci.2004.08.021.
  53. Daniel, W.A. , “Flame Quenching at the Walls of an Internal Combustion Engine,” Symposium (International) on Combustion 6(1):886-894, 1957, doi:10.1016/S0082-0784(57)80125-8.
  54. Kook, S., Zhang, R., Chan, Q.N., Aizawa, T. et al. , “Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments,” SAE Int. J. Engines 9(1):279-296, 2015, doi:10.4271/2015-01-1991.
  55. Miyashita, K., Tsukamoto, T., Fukuda, Y., Kondo, K. et al. , “High-Speed UV and Visible Laser Shadowgraphy of GDI In-Cylinder Pool Fire,” SAE Technical Paper 2016-01-2165 , 2016, doi:10.4271/2016-01-2165.
  56. Yehliu, K., Vander Wal, R.L., Armas, O., and Boehman, A.L. , “Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot,” Combustion and Flame 159(12):3597-3606, 2012, doi:10.1016/j.combustflame.2012.07.004.
  57. Jaramillo, I.C., Gaddam, C.K., Vander Wal, R.L., and Lighty, J.A.S. , “Effect of Nanostructure, Oxidative Pressure and Extent of Oxidation on Model Carbon Reactivity,” Combustion and Flame 162(5):1848-1856, 2015, doi:10.1016/j.combustflame.2014.12.006.
  58. Smooke, M.D., Long, M.B., Connelly, B.C., Colket, M.B. et al. , “Soot Formation in Laminar Diffusion Flames,” Combustion and Flame 143(4):613-628, 2005, doi:10.1016/j.combustflame.2005.08.028.
  59. Sabathil, D., Koenigstein, A., Schaffner, P., Fritzsche, J. et al. , “The Influence of DISI Engine Operating Parameters on Particle Number Emissions,” SAE Technical Paper 2011-01-0143 , 2017, doi:10.4271/2011-01-0143.
  60. Kim, C.H., Xu, F., and Faeth, G.M. , “Soot Surface Growth and Oxidation at Pressures up to 8.0 Atm in Laminar Nonpremixed and Partially Premixed Flames,” Combustion and Flame 152(3):301-316, 2008, doi:10.1016/j.combustflame.2007.10.016.
  61. Steinmetz, S.A., Fang, T., and Roberts, W.L. , “Soot Particle Size Measurements in Ethylene Diffusion Flames at Elevated Pressures,” Combustion and Flame 169:85-93, 2016, doi:10.1016/j.combustflame.2016.02.034.
  62. Böhm, H., Hesse, D., Jander, H., Lüers, B. et al. , “The Influence of Pressure and Temperature on Soot Formation in Premixed Flames,” Symposium (International) on Combustion 22(1):403-411, 1989, doi:10.1016/S0082-0784(89)80047-5.
  63. Bönig, M., Feldermann, C.R., Jander, H., Lüers, B. et al. , “Soot Formation in Premixed C2H4 Flat Flames at Elevated Pressure,” Symposium (International) on Combustion 23(1):1581-1587, 1991, doi:10.1016/S0082-0784(06)80429-7.
  64. Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., Arroyo Rojas Dasilva, Y. et al. , “Electron Microscopic Characterization of Soot Particulate Matter Emitted by Modern Direct Injection Gasoline Engines,” Combustion and Flame 166:307-315, 2016, doi:10.1016/j.combustflame.2016.01.031.
  65. Megaridis, C.M. and Dobbins, R.A. , “Morphological Description of Flame-Generated Materials,” Combustion Science and Technology 71(1-3):95-109, 1990, doi:10.1080/00102209008951626.
  66. Köylü, Ü.Ö., Faeth, G.M., Farias, T.L., and Carvalho, M.G. , “Fractal and Projected Structure Properties of Soot Aggregates,” Combustion and Flame 100(4):621-633, 1995, doi:10.1016/0010-2180(94)00147-K.
  67. Schaefer, D.W. , “Fractal Models and the Structure of Materials,” MRS Bulletin 13(2):22-27, 1988, doi:10.1557/S088376940006632X.
  68. Zhao, F., Lai, M., and Harrington, D. , “A Review of Mixture Preparation and Combustion Control Strategies for Spark- Ignited Direct-Injection Gasoline Engines,” SAE Technical Paper 970627 , 1997, doi:10.4271/970627.
  69. Ciajolo, A., D’anna, A., Barbella, R., Tregrossi, A. et al. , “The Effect of Temperature on Soot Inception in Premixed Ethylene Flames,” Symposium (International) on Combustion 26(2):2327-2333, 1996, doi:10.1016/S0082-0784(96)80061-0.
  70. Ito, H., Fujita, O., and Ito, K. , “Agglomeration of Soot Particles in Diffusion Flames under Microgravity,” Combustion and Flame 99(2):363-370, 1994, doi:10.1016/0010-2180(94)90142-2.
  71. Sánchez, N.E., Callejas, A., Millera, A., Bilbao, R. et al. , “Formation of PAH and Soot during Acetylene Pyrolysis at Different Gas Residence Times and Reaction Temperatures,” Energy 43(1):30-36, 2012, doi:10.1016/j.energy.2011.12.009.

Cited By