This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Efficient Supercapacitors Based on Co9S8/Graphene Composites for Electric Vehicles

Journal Article
2018-01-0440
ISSN: 2167-4191, e-ISSN: 2167-4205
Published April 03, 2018 by SAE International in United States
Efficient Supercapacitors Based on Co<sub>9</sub>S<sub>8</sub>/Graphene Composites for Electric Vehicles
Sector:
Citation: Yang, Y., Ma, F., Han, W., Li, J. et al., "Efficient Supercapacitors Based on Co9S8/Graphene Composites for Electric Vehicles," SAE Int. J. Alt. Power. 7(3):289-295, 2018, https://doi.org/10.4271/2018-01-0440.
Language: English

References

  1. Dou, S., Li, T., Jia, H., Wang, S. et al. , “Etched and Doped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis,” Energy Environ Sci 9:1320-1326, 2016, doi:10.1039/c6ee00054a.
  2. Li, D., Yang, D., Zhu, X., Jing, D. et al. , “Simple Pyrolysis of Cobalt Alginate Fibres into Co3O4/C Nano/Microstructures for a High-Performance Lithium Ion Battery Anode,” J Mater Chem A 2:18761-18766, 2014, doi:10.1039/c4ta03052d.
  3. Li, D., Lv, C., Liu, L., Xia, Y. et al. , “Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage,” ACS Cent Sci 1:261-269, 2015, doi:10.1021/acscentsci.5b00191.
  4. Bui, P.T.M., Song, J.H., Li, Z.Y. et al. , “Low Temperature Solution Processed Mn3O4 Nanoparticles: Enhanced Performance of Electrochemical Supercapacitors,” Journal of Alloys and Compounds 694:560-567, 2017, doi:10.1016/j.jallcom. 2016.10.007.
  5. Yu, J., Lu, W., Joseph, P., Smith, K. et al. , “A High Performance Stretchable Asymmetric Fiber-Shaped Supercapacitor with a Core-Sheath Helical Structure,” Advanced Energy Materials 7:1600976-1600984, 2017, doi:10.1002/aenm.201600976.
  6. Wang, S., Liu, N., Su, J., Li, L. et al. , “Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs,” ACS Nano 11:2066-2074, 2017, doi:10.1021/acsnano.6b08262.
  7. Atchudan, R., Thomas, N., Jebakumar, I. et al. , “Green Synthesis of Nitrogen-Doped Graphitic Carbon Sheets with Use of Prunus Persica for Supercapacitor Applications,” Applied Surface Science 393:276-286, 2017, doi:10.1016/j.apsusc.2016.10. 030.
  8. Zhao, J., Lai, H., Lyu, Z., Jiang, Y. et al. , “Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance,” Adv Mater 27:3541-3445, 2015, doi:10.1002/adma.201500945.
  9. Rajesh, S., Rajesh, K. et al. , “Graphene Oxide: Strategies for Synthesis, Reduction and Frontier Applications,” RSC Adv 6:64993-65011, 2016, doi:10.1039/c6ra07626b.
  10. Xiao, F., Yang, S., Zhang, Z., Liu, H. et al. , “Scalable Synthesis of Freestanding Sandwich-Structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor,” Sci Rep 5:9359, 2015, doi:10.1038/srep09359.
  11. Zhang, L., Hu, X., Wang, Z. et al. , “Experimental Impedance Investigation of an Ultracapacitor at Different Conditions for Electric Vehicle Applications,” Journal of Power Sources 287:129-138, 2015, doi:10.1016/j.jpowsour.2015.04.043.
  12. Zhang, L., Hu, X., Wang, Z. et al. , “Multi-Objective Optimal Sizing of Hybrid Energy Storage System for Electric Vehicles,” IEEE Transactions on Vehicular Technology 2:1027-1035, 2017, doi:10.1109/TVT.2017.2762368.
  13. Zhang, L., Hu, X., Wang, Z. et al. , “A Review of Supercapacitor Modeling, Estimation, and Applications: A Control/Management Perspective,” Renewable & Sustainable Energy Reviews 81:1868-1878, 2017, doi:10.1016/j.rser.2017.05.283.
  14. Feng, H., Hu, H., Dong, H., Xiao, Y. et al. , “Hierarchical Structured Carbon Derived from Bagasse Wastes: A Simple and Efficient Synthesis Route and Its Improved Electrochemical Properties for High-Performance Supercapacitors,” Journal of Power Sources 302:164-173, 2016, doi:10.1016/j.jpowsour. 2015.10.063.
  15. Lamberti, A., Arnaud, G., Stefano, B., Marco, F. et al. , “Self-Assembly of Graphene Aerogel on Copper Wire for Wearable Fiber-Shaped Supercapacitors,” Carbon 105:649-654, 2016, doi:10.1016/j.carbon.2016.05.003.
  16. Zhu, D., Cheng, K., Wang, Y., Sun, D. et al. , “Nitrogen-Doped Porous Carbons with Nanofiber-Like Structure Derived from Poly (Aniline-Co-P-Phenylenediamine) for Supercapacitors,” Electrochimica Acta 224:17-24, 2017, doi:10.1016/j.electacta.2016.12.023.
  17. Xie, Y. and Wang, D. , “Supercapacitance Performance of Polypyrrole/Titanium Nitride/Polyaniline Coaxial Nanotube Hybrid,” Journal of Alloys and Compounds 665:323-332, 2016, doi:10.1016/j.jallcom.2016.01.089.
  18. Chang, Y., Sui, Y., Qi, J., Jiang, L. et al. , “Facile Synthesis of Ni3S2 and Co9S8 Double-Size Nanoparticles Decorated on rGO for High-Performance Supercapacitor Electrode Materials,” Electrochimica Acta 226:69-78, 2017, doi:10.1016/j. electacta.2016.12.184.
  19. Li, H., Gao, Y., Shao, Y., Su, Y. et al. , “Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors,” Nano Lett 15:6689-6695, 2015, doi:10.1021/acs.nanolett.5b02508.
  20. Liu, S., Tong, M., Liu, G., Zhang, X. et al. , “S,N-Containing Co-MOF Derived Co9S8@S,N-Doped Carbon Materials as Efficient Oxygen Electrocatalysts and Supercapacitor Electrode Materials,” Inorg Chem Front 4:491-498, 2017, doi:10.1039/c6qi00403b.
  21. Wen, J., Li, S., Li, B., Song, Z. et al. , “Synthesis of Three Dimensional Co9S8 Nanorod@Ni(OH)2 Nanosheet Core-Shell Structure for High Performance Supercapacitor Application,” Journal of Power Sources 284:279-286, 2015, doi:10.1016/j.jpowsour.2015.02.122.
  22. Xu, J., Wang, Q., Wang, X., Xiang, Q. et al. , “Flexible Asymmetric Supercapacitors Based upon Co9S8 Nanorod//Co3O4@ RuO2 Nanosheet Arrays on Carbon Cloth,” ACS Nano 7:5453-5462, 2013, doi:10.1021/nn401450s.
  23. Li, B., Hu, Y., Li, J., Liu, M. et al. , “Mechanical Alloying Synthesis of Co9S8 Particles as Materials for Supercapacitors,” Metals 6:142-148, 2016, doi:10.3390/met6060142.
  24. Zhang, S., Li, D., Chen, S., Yang, X. et al. , “Highly Stable Supercapacitors with MOF-Derived Co9S8/Carbon Electrodes for High Rate Electrochemical Energy Storage,” J Mater Chem A 5:12453-12461, 2017, doi:10.1039/c7ta03070c.
  25. Wu, T., Ma, X., and Zhu, T. , “Carbon Supported Co9S8 Hollow Spheres Assembled from Ultrathin Nanosheets for High-Performance Supercapacitors,” Materials Letters 183:290-295, 2016, doi:10.1016/j.matlet.2016.07.106.
  26. Yang, Y., Xi, Y., Li, J., Wei, G. et al. , “Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes,” Nanoscale Res Lett 12:394-403, 2017, doi:10.1186/s11671-017-2159-9.
  27. Owusu, A., Qu, L., Li, J., Wang, Z. et al. , “Low-Crystalline Iron Oxide Hydroxide Nanoparticle Anode for High-Performance Supercapacitors,” Nat Commun 8:14264-14275, 2017, doi:10.1038/ncomms14264.

Cited By