This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Virtual CFR Engine Model for Knocking Combustion Analysis

Journal Article
2018-01-0187
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
Sector:
Citation: Pal, P., Kolodziej, C., Choi, S., Som, S. et al., "Development of a Virtual CFR Engine Model for Knocking Combustion Analysis," SAE Int. J. Engines 11(6):1069-1082, 2018, https://doi.org/10.4271/2018-01-0187.
Language: English

References

  1. Kalghatgi , G.T. Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels Proc. Combust. Inst. 35 101 115 2015 10.1016/j.proci.2014.10.002
  2. Reitz , R. Directions in Internal Combustion Engine Research Combust. Flame 160 1 8 2013 10.1016/j.combustflame.2012.11.002
  3. Kalghatgi , G. The Outlook for Fuels for Internal Combustion Engines Int. J. Engine Res. 15 4 383 398 2014 10.1177/1468087414526189
  4. Wang , Z. , Liu , H. , and Reitz , R. Knocking Combustion in Spark Ignition Engines Prog. Energy Combust. Sci. 61 78 112 2017 10.1016/j.pecs.2017.03.004
  5. Kalghatgi , G. Knock Onset, Knock Intensity, Superknock and Preignition in Spark Ignition Engines Int. J. Engine Res. 19 1 7 20 2017 10.1177/1468087417736430
  6. Heywood , J.B. Internal Combustion Engine Fundamentals McGraw-Hill 1988
  7. ASTM D2699-12 2012
  8. ASTM D2700-16 2016
  9. Leppart , W. The Chemical Origin of Fuel Octane Sensitivity SAE Technical Paper 902137 1979 10.4271/902137
  10. Mehl , M. , Faravelli , T. , Giavazzi , F. , Ranzi , E. et al. Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity Energy Fuels 20 2391 2398 2006 10.1021/ef060339s
  11. Westbook , C.K. , Mehl , M. , Pitz , W.J. , and Sjoberg , M. Chemical Kinetics of Octane Sensitivity in a Spark-Ignition Engine Combust. Flame 175 2 15 2017 10.1016/j.combustflame.2016.05.022
  12. Sluder , C.S. , Szybist , J.P. , McCormick , R.L. , Ratcliff , M.A. et al. Exploring the Relationship between Octane Sensitivity and Heat-Of-Vaporization SAE Int. J. Fuels Lubr. 9 2016 10.4271/2016-01-0836
  13. Tao , M. , Wu , T. , Ge , H. , DelVescovo , D. et al. A Kinetic Modeling Study on Octane Rating and Fuel Sensitivity in Advanced Compression Ignition Engines Combust. Flame 185 234 244 2017 10.1016/j.combustflame.2017.07.020
  14. Kalghatgi , G.T. Fuel/Engine Interactions Warrendale, PA SAE International 2013
  15. Kalghatgi , G.T. Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines SAE Technical Paper 2005-01-0239 2005 10.4271/2005-01-0239
  16. Kalghatgi , G.T. Fuel Anti-Knock Quality-Part I. Engine Studies SAE Technical Paper 2001-01-3584 2001 10.4271/2001-01-3584
  17. Kalghatgi , G.T. Fuel Anti-Knock Quality-Part II. Vehicle Studies-How Relevant is Motor Octane Number (MON) for Modern Engines SAE Technical Paper 2001-01-3585 2001 10.4271/2001-01-3585
  18. Zhang , B. and Sarathy , S.M. Lifecycle Optimized Ethanol-Gasoline Blends for Turbocharged Engines Appl. Energy 181 38 53 2016 10.1016/j.apenergy.2016.08.052
  19. Boot , M.D. , Tian , M. , Hensen , E.J.M. , and Sarathy , S.M. Impact of Fuel Molecular Structure on Auto-Ignition Behavior-Design Rules for Future High Performance Gasolines Prog. Energy Combust. Sci. 60 1 25 2017 10.1016/j.pecs.2016.12.001
  20. Im , H.G. , Pal , P. , Wooldridge , M.S. , and Mansfield , A.B. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations Combust. Sci. Technol. 187 8 1263 1275 2015 10.1080/00102202.2015.1034355
  21. Pal , P. , Valorani , M. , Arias , P.G. , Im , H.G. et al. Computational Characterization of Ignition Regimes in a Syngas/Air Mixture with Temperature Fluctuations Proc. Combust. Inst. 36 3705 3716 2017 10.1016/j.proci.2016.07.059
  22. Pal , P. , Mansfield , A.B. , Arias , P.G. , Wooldridge , M.S. et al. A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and Low-Temperature Conditions with Thermal Inhomogeneities Combust. Theory Model. 19 5 587 601 2015 10.1080/13647830.2015.1068373
  23. Pal , P. , Mansfield , A.B. , Wooldridge , M.S. , and Im , H.G. Characteristics of Syngas Auto-Ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities Energy Procedia 66 1 4 2015 10.1016/j.egypro.2015.02.003
  24. Pal , P. , Im , H.G. , Wooldridge , M.S. , and Mansfield , A.B. Auto-Ignition Phenomena in Thermally Inhomogeneous Turbulent Reacting Flows; Numerical Validation of a Regime Diagram 10th Asia-Pacific Conference on Combustion 2015
  25. Pal , P. , Valorani , M. , Im , H.G. , and Wooldridge , M.S. Prediction of Strong and Weak Ignition Regimes in Turbulent Reacting Flows with Temperature Fluctuations: A Direct Numerical Study 68th Annual Meeting of APS Division of Fluid Dynamics 60 21 2015
  26. Pal , P. , Im , H.G. , Wooldridge , M.S. , and Mansfield , A.B. Effects of Turbulence and Temperature Fluctuations on Syngas Auto-Ignition 7th European Combustion Meeting 2015 978-963-12-1257-0
  27. Peters , N. Turbulent Combustion Cambridge, UK Cambridge University Press 2000
  28. Som , S. , Longman , D.E. , Luo , Z. , Plomer , M et al. Three Dimensional Simulations of Diesel Sprays Using n -Dodecane as a Surrogate Fall Technical Meeting of the Eastern States Section of the Combustion Institute 2011
  29. Liang , L. and Reitz , R.D. Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry SAE Technical Paper 2006-01-0243 2006 10.4271/2006-01-0243
  30. Liang , L. , Reitz , R.D. , Iyer , C.O. , and Yi , J. Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics SAE Technical Paper 2007-01-0165 2007 10.4271/2007-01-0165
  31. Wang , Z. , Wang , Y. , and Reitz , R.D. Pressure Oscillation and Chemical Kinetics Coupling during Knock Processes in Gasoline Engine Combustion Energy Fuels 26 12 7107 717119 2012 10.1021/ef301472g
  32. Metghalchi , M. and Keck , J.C. Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene at High Pressures and Temperatures Combust. Flame 48 191 210 1982 10.1016/0010-2180(82)90127-4
  33. Gulder , O.L. Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels SAE Technical Paper 841000 1984 10.4271/841000
  34. Pal , P. , Wu , Y. , Lu , T. , Som , S. et al. Multi-Dimensional CFD Simulations of Knocking Combustion in a CFR Engine Proceedings of the ASME 2017 Internal Combustion Engine Fall Technical Conference 2017 10.1115/ICEF2017-3599
  35. Kolodziej , C. and Wallner , T. Combustion Characteristics of Various Fuels during Research Octane Number Testing on an Instrumented CFR F1/F2 Engine Combust. Engines 171 4 164 169 2017 10.19206/CE-2017-427
  36. Gamma Technologies 2014
  37. Choi , S. , Kolodziej , C. , Wallner , T. , and Hoth , A. Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions SAE Technical Paper 2018-01-0848 2018 10.4271/2018-01-0848
  38. CONVERGE 2.3 Theory Manual Middleton, WI Convergent Science Inc. 2016
  39. Givler , S. , Raju , M. , Pomraning , E. , Senecal , P. et al. Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism SAE Technical Paper 2013-01-1098 2013 10.4271/2013-01-1098
  40. Pomraning , E. , Richards , K. , and Senecal , P. Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement SAE Technical Paper 2014-01-1116 2014 10.4271/2014-01-1116
  41. Scarcelli , R. , Richards , K. , Pomraning , E. , Senecal , P.K. et al. Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations SAE Technical Paper 2016-01-0593 2016 10.4271/2016-01-0593
  42. Robert , A. , Richard , S. , Colin , O. , Martinez et al. LES Prediction and Analysis of Knocking Combustion in a Spark Ignition Engine Proc. Combust. Inst. 35 2941 2948 2015 10.1016/j.proci.2014.05.154
  43. Robert , A. , Richard , S. , Colin , O. , and Poinsot , T. LES Study of Deflagration to Detonation Mechanisms in a Downsized Spark Ignition Engine Combust. Flame 162 7 2788 2807 2015 10.1016/j.combustflame.2015.04.010
  44. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG K-ε Models Combust. Sci. Technol. 106 267 295 1995 10.1080/00102209508907782
  45. Han , Z. and Reitz , R.D. A Temperature Wall Function Formulation for Variable Density Turbulence Flow with Application to Engine Convective Heat Transfer Modeling Int. J. Heat Mass Transfer 40 3 613 625 1997 10.1016/0017-9310(96)00117-2
  46. Pan , J. , Wei , H. , Shu , G. , and Pan , M. LES Analysis of Auto-Ignition Induced Abnormal Combustion Based on a Downsized SI Engine Appl. Energy 191 183 192 2017 10.1016/j.apenergy.2017.01.044
  47. Ewald , J. and Peters , N. A Level Set Based Flamelet Model for the Prediction of Combustion in Spark Ignition Engines 15th International Multidimensional Engine Modeling User Group Detroit, MI 2005
  48. Kim , S.H. A Front Propagation Formulation for under-Resolved Reaction Fronts Int. J. Comput. Phys. 285 193 207 2015 10.1016/j.jcp.2014-12-051
  49. Babajimopoulos , A. , Assanis , D.N. , Flowers , D.L. , Aceves , S.M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines Int. J. Engine Res. 6 5 497 512 2005 10.1243/146808705X30503
  50. Pal , P. , Keum , S. , and Im , H.G. Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines Int. J. Engine Res. 17 3 280 290 2016 10.1177/1468087415571006
  51. Pal , P. Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications 2016 http://hdl.handle.net/2027.42/120735
  52. Keum , S. , Pal , P. , Im , H.G. , Babajimopoulos , A. et al. Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions Int. J. Engine Res. 17 4 413 420 2016 10.1177/1468087415583597
  53. Pal , P. , Probst , D. , Pei , Y. , Zhang , Y. et al. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis SAE Int. J. Fuels Lubr. 10 1 2017 10.4271/2017-01-0578
  54. Liu , Y.D. , Jia , M. , Xie , M.Z. , and Pang , B. Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using Semidecoupling Methodology Energy Fuels 26 12 7069 7083 2012 10.1021/ef301242b
  55. Fieweger , K. , Blumenthal , R. , and Adomeit , G. Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure Combust. Flame 109 599 619 1997 10.1016/S0010-2180(97)00049-7
  56. Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proc. Combust. Inst. 33 193 200 2011 10.1016/j.proci.2010.15.027
  57. Davidson , D. , Gauthier , B. , and Hanson , R. Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures Proc. Combust. Inst. 30 1175 1182 2005 10.1016/j.proci.2004.08.004
  58. Shen , H.-P.S. , Vanderover , J. , and Oehlschlaeger , M.A. A Shock Tube Study of Iso-Octane Ignition at Elevated Pressures: The Influence of Diluent Gases Combust. Flame 155 739 755 2008 10.1016/j.combustflame.2008.06.001
  59. Wu , Y. , Pal , P. , Som , S. , and Lu , T. A Skeletal Chemical Kinetic Mechanism for Gasoline and Gasoline/Ethanol Blend Surrogates for Engine CFD Applications International Conference on Chemical Kinetics 2017
  60. Davis , S.G. and Law , C.K. Determination of Fuel Structure Effects on Laminar Flame Speeds of C 1 to C 8 Hydrocarbons Combust. Sci. Technol. 140 427 449 1998 10.1080/00102209808915781
  61. Kwon , O.C. , Hassan , M.I. , and Faeth , G.M. Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames J. Propulsion Power 16 3 513 522 2000 10.2514/2.5598
  62. Huang , Y. , Sung , C.J. , and Eng , J.A. Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures Combust. Flame 139 239 251 2004 10.1016/j.combustflame.2004.08.011
  63. Kwon , K. , Freeh , J.E. , Sung , C.J. , and Huang , Y. Laminar Flame Speeds of Preheated Iso-Octane/O 2 /N 2 and n -Heptane/O 2 /N 2 Mixtures J. Propulsion Power 23 2 428 436 2007 10.2514/1.24391
  64. Van Lipzig , J.P.J. , Nilsson , E.J.K. , de Goey , L.P.H. , and Konnov , A.A. Laminar Burning Velocities of n -Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures Fuel 90 2773 2781 2011 10.1016/j.fuel.2011.04.029
  65. Dirrenberger , P. , Glaude , P.A. , Bounaceur , R. , Le Gall , H. et al. Laminar Burning Velocities of Gasolines with Addition of Ethanol Fuel 115 162 169 2014 10.1016/j.fuel.2013.07.015
  66. Broatch , A. , Margot , X. , Novella , R. , and Gomez-Soriano , J. Combustion Noise Analysis of Partially Premixed Combustion Concept Using Gasoline Fuel in a 2-Stroke Engine Energy 107 612 624 2016 10.1016/j.energy.2016.04.045
  67. Kalghatgi , G.T. , Golombok , M. , and Snowdon , P. Fuel Effects on Knock, Heat Release and “CARS” Temperatures in a Spark Ignition Engine Combust. Sci. Technol. 110-111 1 209 228 1995 10.1080/00102209508951924
  68. Yates , A.D.B. , Swarts , A. , and Vilijoen , C.L. Correlating Auto-Ignition Delays and Knock-Limited Spark-Advance Data for Different Types of Fuel SAE Technical Paper 2005-01-2083 2005 10.4271/2005-01-2083
  69. Foong , T.M. , Brear , M. , Morganti , K. , Silva , G. et al. Modeling End-Gas Auto-Ignition of Ethanol/Gasoline Surrogate Blends in the Cooperative Fuel Research Engine Energy Fuels 31 3 2378 2389 2017 10.1021/acs.energyfuels.6b02380
  70. Scarcelli , R. and Zhang , A. Advances in Modeling Ignition Processes to Enable High-Efficiency SI Combustion AEC Program Review Meeting Southfield, MI 2017

Cited By