This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

Journal Article
2017-24-0043
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 04, 2017 by SAE International in United States
Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations
Sector:
Citation: Kammermann, T., Koch, J., Wright, Y., Soltic, P. et al., "Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations," SAE Int. J. Engines 10(4):2176-2190, 2017, https://doi.org/10.4271/2017-24-0043.
Language: English

References

  1. Rassweiler , G. and Withrow , L. Motion Pictures of Engine Flames Correlated with Pressure Cards SAE Technical Paper 380139 1938 10.4271/380139
  2. Damköhler , G. Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen Berichte der Bunsengesellschaft für physikalische Chemie 1940 46 601 626
  3. Ziegler , G. , Zettlitz , A. , Meinhardt , P. , Herweg , R. et al. Cycle-Resolved Two-Dimensional Flame Visualization in a Spark-Ignition Engine SAE Technical Paper 881634 1988 10.4271/881634
  4. Borghi , R. On the structure and morphology of turbulent premixed flames Recent advances in the Aerospace Sciences 1985 Springer 117 138
  5. Peters , N. Turbulent Combustion 2000 Cambridge Cambridge University Press
  6. Reuss , D. , Adrian , R. , Landreth , C. , French , D. et al. Instantaneous Planar Measurements of Velocity and Large-Scale Vorticity and Strain Rate in an Engine Using Particle-Image Velocimetry SAE Technical Paper 890616 1989 10.4271/890616
  7. Reuss , D. Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows SAE Technical Paper 2000-01-0246 2000 10.4271/2000-01-0246
  8. Voisine , M. et al. Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow Experiments in Fluids 2011 50 5 1393 1407
  9. Fajardo , C. and Sick V. Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution Proceedings of the Combustion Institute 2007 31 3023 3031
  10. Buschbeck , M. Laser diagnostics of cycle-to-cycle variations in an optically accessible engine 2013 PhD Thesis TU Darmstadt Darmstadt
  11. Baum , E. et al. Investigation of the 3D flow field in an IC engine using tomographic PIV Proceedings of the Combustion Institute 2013 34 2903 2910
  12. Elsinga , G.E. et al. Tomographic particle image velocimetry Experiments in Fluids 2006 41 6 933 947
  13. Peterson , B. et al. Early flame propagation in a spark-ignition engine measured with quasi 4D-diagnostics Proceedings of the Combustion Institute 2015 35 3829 3837
  14. Gerke , U. Numerical analysis of mixture formation and combustion in a hydrogen direct-injection internal combustion engine 2007 PhD thesis, ETH Zurich, Diss. ETH Nr. 17477 Göttingen
  15. Schlatter , S. , Schneider , B. , Wright , Y. , and Boulouchos , K. Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine SAE Technical Paper 2013-24-0112 2013 10.4271/2013-24-0112
  16. Schlatter , S. , Schneider , B. , Wright , Y. , and Boulouchos , K. Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine SAE Technical Paper 2012-01-0825 2012 10.4271/2012-01-0825
  17. Escher , A.M. Experimentelle Untersuchungen der homogenen, kompressionsgezündeten Verbrennung im Einhubtriebwerk 2007 PhD thesis, ETH Zurich, Diss. ETH Nr. 17251 Zürich
  18. Mitakos , D.A. Experimental Investigations for Phenomenological Modelling of Two-Stage Auto-Ignition under HCCI Conditions 2014 PhD thesis, ETH Zurich, Diss. ETH Nr. 22323
  19. Gerke , U. et al. Derivation of burning velocities of premixed hydrogen/air flames at engine-relevant conditions using a single-cylinder compression machine with optical access International Journal of Hydrogen Energy 2010 35 2566 2577
  20. Perini , F. , Zha , K. , Busch , S. , Miles , P. et al. Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine SAE Technical Paper 2015-01-1696 2015 10.4271/2015-01-1696
  21. Shy , S.S. , I W.K. , and Lin M.L. A new cruciform burner and its turbulence measurements for premixed turbulent combustion study Experimental Thermal and Fluid Science 2000 20 3-4 105 114
  22. Abdel-Gayed , R.G. , Bradley D. , and Lawes M. Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1987 414 1847 389
  23. Siebers , D. Liquid-Phase Fuel Penetration in Diesel Sprays SAE Technical Paper 980809 1998 10.4271/980809
  24. Franquet , E. et al. Free underexpanded jets in a quiescent medium: A review Progress in Aerospace Sciences 2015 77 25 53
  25. Mach , E. and Salcher P. Optische Untersuchung der Luftstrahlen Annalen der Physik 1890 277 144 150
  26. Scroggs , S.D. and Settles G.S. An experimental study of supersonic microjets Experiments in Fluids 1996 21 401 409
  27. Settles , G.S. Schlieren and Shadowgraph Techniques 2001 Berlin, Heidelberg Springer Berlin Heidelberg
  28. Crist , S. , Glass D.R. , and Sherman P.M. Study of the highly underexpanded sonic jet AIAA Journal 1966 4 1 68 71
  29. Adamson , T.C. and Nicholls J.A. On the Structure of Jets from Highly Underexpanded Nozzles Into Still Air Journal of the Aerospace Sciences 1959 26 16 24
  30. Rogers , T. et al. Structural characteristics of hydrogen and compressed natural gas fuel jets International Journal of Hydrogen Energy 2015 40 1584 1597
  31. Yu , J. , Vuorinen , V. , Kaario , O. , Sarjovaara , T. et al. Characteristics of High Pressure Jets for Direct Injection Gas Engine SAE Int. J. Fuels Lubr 6 1 149 156 2013 10.4271/2013-01-1619
  32. Kim , G.-H. , Kirkpatrick A. , and Mitchell C. Computational Modeling of Natural Gas Injection in a Large Bore Engine Journal of Engineering for Gas Turbines and Power 2004 126 656 664
  33. Birch , A.D. et al. The Structure and Concentration Decay of High Pressure Jets of Natural Gas Combustion Science and Technology 1984 36 5-6 249 261
  34. Ewan , B.C.R. and Moodie K. Structure and Velocity Measurements in Underexpanded Jets Combustion Science and Technology 1986 45 5-6 275 288
  35. Birch , A.D. , Hughes D.J. , and Swaffield F. Velocity Decay of High Pressure Jets Combustion Science and Technology 1987 52 1-3 161 171
  36. Yüceil , K.B. and Ötügen M.V. Scaling parameters for underexpanded supersonic jets Physics of Fluids 2002 14 12 4206 4215
  37. Müller , F. , Schmitt , M. , Wright , Y. , and Boulouchos , K. Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations SAE Int. J. Engines 6 3 1532 1543 2013 10.4271/2013-24-0004
  38. Schmitt , M. et al. Multiple Cycle LES Simulations of a Direct Injection Natural Gas Engine Flow, Turbulence and Combustion 2015 95 645 668
  39. Mather , D. and Reitz , R. Modeling the Effects of Auxiliary Gas Injection on Diesel Engine Combustion and Emissions SAE Technical Paper 2000-01-0657 2000 10.4271/2000-01-0657
  40. Menter , F. Zonal two equation kw turbulence models for aerodynamic flows 23rd fluid dynamics, plasmadynamics, and lasers conference 1993
  41. Bartosiewicz , Y. et al. Numerical and experimental investigations on supersonic ejectors International Journal of Heat and Fluid Flow 2005 26 1 56 70
  42. Gagan , J. et al. Comparative study of turbulence models in application to gas ejectors International Journal of Thermal Sciences 2014 78 9 15
  43. Besagni , G. and Inzoli F. Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches Applied Thermal Engineering 2017 117 122 144
  44. Koch , J. , Xu , G. , Wright , Y. , Boulouchos , K. et al. Comparison and Sensitivity Analysis of Turbulent Flame Speed Closures in the RANS G-Equation Context for Two Distinct Engines SAE Int. J. Engines 9 4 2091 2106 2016 10.4271/2016-01-2236
  45. Goodwin , D.G. , Moffat H.K. , and Speth R.L. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes 2017 http://www.cantera.org
  46. Smith , G.P. et al. GRI-Mech 3.0 1999
  47. Vagelopoulos , C. , Egolfopoulos F. , and Law C. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique Symposium (international) on combustion 1994 Elsevier
  48. Vagelopoulos , C.M. and Egolfopoulos F.N. Direct experimental determination of laminar flame speeds Symposium (International) on Combustion 1998 27 1 513 519
  49. Van Maaren , A. , Thung D. , and DE GOEY L.R.H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures Combustion Science and Technology 1994 96 4-6 327 344
  50. Heywood , J.B. Internal combustion engine fundamentals 930 1988 McGraw-Hill New York

Cited By