This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Validation of a Reduced Order Model Incorporating a Semi-Empirical Degradation Model for Pouch Type LiFePO4/Graphite Cells

Journal Article
2017-01-1218
ISSN: 2167-4191, e-ISSN: 2167-4205
Published March 28, 2017 by SAE International in United States
Development and Validation of a Reduced Order Model Incorporating a Semi-Empirical Degradation Model for Pouch Type LiFePO<sub>4</sub>/Graphite Cells
Sector:
Citation: ZHAO, X., Bi, Y., and Choe, S., "Development and Validation of a Reduced Order Model Incorporating a Semi-Empirical Degradation Model for Pouch Type LiFePO4/Graphite Cells," SAE Int. J. Alt. Power. 6(2):279-289, 2017, https://doi.org/10.4271/2017-01-1218.
Language: English

References

  1. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. ., "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates." Journal of the Electrochemical Society 144, no. 5 (1997): 1609–1613. doi:10.1149/1.1837649
  2. Ritchie, A. and Howard, W., "Recent developments and likely advances in lithium-ion batteries." Journal of Power Sources 162, no. 2 (2006): 809–812.
  3. Wood, E., Alexander, M. and Bradley, T.H., "Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles." Journal of Power Sources196, no. 11 (2011): 5147–5154.
  4. Zackrisson, M., Avellán, L. and Orlenius, J., "Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles–Critical issues." Journal of Cleaner Production 18, no. 15 (2010): 1519–1529.
  5. Gambhire, P., Hariharan, K.S., Khandelwal, A., Kolake, S.M. ., "A physics based reduced order aging model for lithium-ion cells with phase change." Journal of Power Sources 270 (2014): 281–291.
  6. Doyle, M., Fuller, T.F. and Newman, J., "Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell." Journal of the Electrochemical Society 140, no. 6 (1993): 1526–1533. doi:10.1149/1.2221597
  7. Srinivasan, V. and Newman, J., "Discharge model for the lithium iron-phosphate electrode." Journal of the Electrochemical Society 151, no. 10 (2004): A1517–A1529. doi:10.1149/1.1785012
  8. Wang, C., Kasavajjula, U.S. and Arce, P.E., "A discharge model for phase transformation electrodes: formulation, experimental validation, and analysis." The Journal of Physical Chemistry C 111, no. 44 (2007): 16656–16663. doi:10.1149/1.2980420
  9. Kasavajjula, U.S., Wang, C. and Arce, P.E., "Discharge model for LiFePO4 accounting for the solid solution range." Journal of the Electrochemical Society 155, no. 11 (2008): A866–A874.
  10. Khandelwal, A., Hariharan, K.S., Kumar, V.S., Gambhire, P. ., "Generalized moving boundary model for charge–discharge of LiFePO4/C cells." Journal of Power Sources 248 (2014): 101–114.
  11. Bazant, M. Z. "Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics." Accounts of chemical research 46, no. 5 (2013): 1144–1160.
  12. Cahn, J.W. and Hilliard, J.E., "Free energy of a nonuniform system. I. Interfacial free energy." The Journal of chemical physics 28, no. 2 (1958): 258–267.
  13. Singh, G.K., Ceder, G. and Bazant, M.Z., "Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4." Electrochimica Acta 53, no. 26 (2008): 7599–7613.
  14. Bai, P., Cogswell, D.A. and Bazant, M.Z., "Suppression of phase separation in LiFePO4 nanoparticles during battery discharge." Nano letters 11, no. 11 (2011): 4890–4896.
  15. Thorat, I.V., Joshi, T., Zaghib, K., Harb, J.N. ., "Understanding rate-limiting mechanisms in LiFePO4 cathodes for Li-ion batteries." Journal of the Electrochemical Society 158, no. 11 (2011): A1185–A1193. doi:10.1149/2.001111jes
  16. Farkhondeh, M. and Delacourt, C., "Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity." Journal of the Electrochemical Society 159, no. 2 (2011): A177–A192. doi:10.1149/2.073202jes
  17. Safari, M. and Delacourt, C., "Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence." Journal of the Electrochemical Society 158, no. 2 (2011): A63–A73. doi:10.1149/1.3515902
  18. Safari, M. and Delacourt, C., "Modeling of a commercial graphite/LiFePO4 cell." Journal of the Electrochemical Society 158, no. 5 (2011): A562–A571. doi:10.1149/1.3567007
  19. Dao, T.S., Vyasarayani, C.P. and McPhee, J., "Simplification and order reduction of lithium-ion battery model based on porous-electrode theory." Journal of Power Sources 198 (2012): 329–337.
  20. Baba, N., Yoshida, H., Nagaoka, M., Okuda, C. ., "Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model." Journal of Power Sources 252 (2014): 214–228.
  21. Smith, K.A., Rahn, C.D. and Wang, C.Y., "Model order reduction of 1D diffusion systems via residue grouping." Journal of Dynamic Systems, Measurement, and Control 130, no. 1 (2008): 011012.
  22. Subramanian, V.R., Boovaragavan, V., Ramadesigan, V. and Arabandi, M., "Mathematical model reformulation for lithiumion battery simulations: Galvanostatic boundary conditions." Journal of the Electrochemical Society 156, no. 4 (2009): A260–A271. doi:10.1149/1.3065083
  23. Cai, L. and White, R.E., "Reduction of model order based on proper orthogonal decomposition for lithium-ion battery simulations." Journal of the Electrochemical Society 156, no. 3 (2009): A154–A161. doi:10.1149/1.3049347
  24. Kumar, V. S., "Reduced order model for a lithium ion cell with uniform reaction rate approximation." Journal of Power Sources 222 (2013): 426–441.
  25. Ramadass, P., Haran, B., Gomadam, P.M., White, R. ., "Development of first principles capacity fade model for Li-ion cells." Journal of the Electrochemical Society 151, no. 2 (2004): A196–A203. doi:10.1149/1.1634273
  26. Santhanagopalan, S., Zhang, Q., Kumaresan, K., White, R.E. , "Parameter estimation and life modeling of lithium-ion cells." Journal of the Electrochemical Society 155, no. 4 (2008): A345–A353. doi:10.1149/1.2839630
  27. Sikha, G., Popov, B.N. and White, R.E., "Effect of porosity on the capacity fade of a lithium-ion battery theory." Journal of the Electrochemical Society 151, no. 7 (2004): A1104–A1114. doi:10.1149/1.1759972
  28. Ploehn, H.J., Ramadass, P. and White, R.E., "Solvent diffusion model for aging of lithium-ion battery cells." Journal of the Electrochemical Society 151, no. 3 (2004): A456–A462. doi:10.1149/1.1644601
  29. Zhang, Q. and White, R.E., "Capacity fade analysis of a lithium ion cell." Journal of Power Sources 179, no. 2 (2008): 793–798.
  30. Zhang, Y., Wang, C.Y. and Tang, X., "Cycling degradation of an automotive LiFePO4 lithium-ion battery." Journal of Power Sources 196, no. 3 (2011): 1513–1520.
  31. Groot, J., Swierczynski, M., Stan, A.I. and Kær, S.K., "On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents." Journal of Power Sources 286 (2015): 475–487.
  32. Verma, P., Maire, P. and Novák, P., "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries." Electrochimica Acta 55, no. 22 (2010): 6332–6341.
  33. Safari, M. and Delacourt, C., "Aging of a commercial graphite/LiFePO4 cell." Journal of the Electrochemical Society 158, no. 10 (2011): A1123–A1135. doi:10.1149/1.3614529
  34. Vetter, J., Novák, P., Wagner, M.R., Veit, C. ., "Ageing mechanisms in lithium-ion batteries." Journal of power sources 147, no. 1 (2005): 269–281.
  35. Barré, A., Deguilhem, B., Grolleau, S., Gérard, M. ., "A review on lithium-ion battery ageing mechanisms and estimations for automotive applications." Journal of Power Sources 241 (2013): 680–689.
  36. Rujian, F, Song-Yul, C., Victor, A., and Jeffrey, F., "Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions." Journal of Power Sources 278 (2015): 506–521.
  37. Singh, G.K., Ceder, G. and Bazant, M.Z., "Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4." Electrochimica Acta 53, no. 26 (2008): 7599–7613.
  38. Striebel, K., Guerfi, A., Shim, J., Armand, M. ., "LiFePO4/gel/natural graphite cells for the BATT program." Journal of power sources 119 (2003): 951–954.
  39. Striebel, K., Shim, J., Sierra, A., Yang, H., "The development of low cost LiFePO4-based high power lithium-ion batteries." Journal of Power Sources 146, no. 1 (2005): 33–38.
  40. Zaghib, K., Ravet, N., Gauthier, M., Gendron, F., "Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry." Journal of power sources 163, no. 1 (2006): 560–566.
  41. Dubarry, M. and Liaw, B.Y., "Identify capacity fading mechanism in a commercial LiFePO4 cell." Journal of Power Sources 194, no. 1 (2009): 541–549.
  42. Srinivasan, V. and Newman, J., "Existence of path-dependence in the LiFePO4 electrode." Electrochemical and solid-state letters 9, no. 3 (2006): A110–A114.
  43. Xueyan, L., Xiao, M., and Song-Yul, C. "Reduced order model (ROM) of a pouch type lithium polymer battery based on electrochemical thermal principles for real time applications." Electrochimica Acta 97 (2013): 66–78.

Cited By