This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Internal Cell Temperature Measurement and Thermal Modeling of Lithium Ion Cells for Automotive Applications by Means of Electrochemical Impedance Spectroscopy

Journal Article
2017-01-1215
ISSN: 2167-4191, e-ISSN: 2167-4205
Published March 28, 2017 by SAE International in United States
Internal Cell Temperature Measurement and Thermal Modeling of Lithium Ion Cells for Automotive Applications by Means of Electrochemical Impedance Spectroscopy
Sector:
Citation: Haussmann, P. and Melbert, J., "Internal Cell Temperature Measurement and Thermal Modeling of Lithium Ion Cells for Automotive Applications by Means of Electrochemical Impedance Spectroscopy," SAE Int. J. Alt. Power. 6(2):261-270, 2017, https://doi.org/10.4271/2017-01-1215.
Language: English

References

  1. Zhang , G. , Ge , S. , Xu , T. , Yang , X.-G. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures Electrochimica Acta 218 149 155 2016 10.1016/j.electacta.2016.09.117
  2. Wang , P. , Zhang , X. , Yang Le , Zhang , X. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process Extreme Mechanics Letters 2016 10.1016/j.eml.2016.03.013
  3. Richardson , R.R. , Ireland , P.T. , and Howey , D.A. Battery internal temperature estimation by combined impedance and surface temperature measurement Journal of Power Sources 265 254 261 2014 10.1016/j.jpowsour.2014.04.129
  4. Lohmann , N. , Haussmann , P. , Wesskamp , P. , Melbert , J. Employing Real Automotive Driving Data for Electrochemical Impedance Spectroscopy on Lithium-Ion Cells SAE Int. J. Alt. Power. 4 2 308 317 2015 10.4271/2015-01-1187
  5. Dey , S. , Biron , Z.A. , Tatipamula , S. , Das , N. Model-based real-time thermal fault diagnosis of Lithium-ion batteries Control Engineering Practice 56 37 48 2016 10.1016/j.conengprac.2016.08.002
  6. Pesaran , A.A. Battery thermal models for hybrid vehicle simulations Journal of Power Sources 110 2 377 382 2002 10.1016/S0378-7753(02)00200-8
  7. Lohmann , N. , Weßkamp , P. , Haußmann , P. , Melbert , J. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain Journal of Power Sources 273 613 623 2015 10.1016/j.jpowsour.2014.09.132
  8. Weßkamp , P. , Haußmann , P. , and Melbert , J. 600-A Test System for Aging Analysis of Automotive Li-Ion Cells With High Resolution and Wide Bandwidth IEEE Trans. Instrum. Meas. 65 7 1651 1660 2016 10.1109/TIM.2016.2534379
  9. Haußmann , P. and Melbert , J. Impedance spectroscopy on lithium ion cells for automotive applications with optimized measurement duration and frequency resolution 18. GMA/ITG-Fach-ta-gung Sen-so-ren und Mess-sys-te-me, Nürn-berg, AMA Ser-vice GmbH 308 315
  10. Schmidt , J.P. , Weber , A. , and Ivers-Tiffée , E. A novel and precise measuring method for the entropy of lithium-ion cells: ΔS via electrothermal impedance spectroscopy Electrochimica Acta 137 311 319 2014 10.1016/j.electacta.2014.05.153
  11. Thomas , K.E. and Newman , J. Thermal Modeling of Porous Insertion Electrodes J. Electrochem. Soc. 150 2 A176 2003 10.1149/1.1531194
  12. Hu , X. , Lin , S. , Stanton , S. , and Lian , W. A Foster Network Thermal Model for HEV/EV Battery Modeling IEEE Trans. on Ind. Applicat. 47 4 1692 1699 2011 10.1109/TIA.2011.2155012
  13. Samba , A. , Omar , N. , Gualous , H. , Firouz , Y. Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells Electrochimica Acta 117 246 254 2014 10.1016/j.electacta.2013.11.113
  14. Chiang , Y.-H. , Sean , W.-Y. , and Ke , J.-C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles Journal of Power Sources 196 8 3921 3932 2011 10.1016/j.jpowsour.2011.01.005

Cited By