This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

Journal Article
2017-01-0722
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 28, 2017 by SAE International in United States
A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency
Sector:
Citation: Olmeda, P., Martin, J., Garcia, A., Villalta, D. et al., "A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency," SAE Int. J. Engines 10(3):1204-1216, 2017, https://doi.org/10.4271/2017-01-0722.
Language: English

References

  1. Knecht W. “Diesel engine development in view of reduced emission stardards”. Energy 33 (2) (2008) 264-271.doi:10.1016/j.energy.2007.10.003
  2. Caresana, F., Bilancia, M., Bartolini C.M., “Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car”, Appl. Therm. Eng. 31(16), 3559-3568, 2011, doi:10.1016/j.applthermaleng.2011.07.017.
  3. Chalgren, R. and Allen, D., "Light Duty Diesel Advanced Thermal Management," SAE Technical Paper 2005-01-2020, 2005, doi:10.4271/2005-01-2020.
  4. Dimopoulos, P., Bacha, C., Soltica, P., Boulouchos, K., “Hydrogen-natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment”, Int. J. Hydrogen Energ. 33(23), 7224-7236,2008, doi:10.1016/j.ijhydene.2008.07.012.
  5. Osada, H., Uchida, N., Shimada, K., and Aoyagi, Y., "Reexamination of Multiple Fuel Injections for Improving the Thermal Efficiency of a Heavy-Duty Diesel Engine," SAE Technical Paper 2013-01-0909, 2013, doi:10.4271/2013-01-0909.
  6. Benajes, J., Martin, J., Garcia, A., Villalta, D. et al., "An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine," SAE Int. J. Engines 8(5):2199-2212, 2015, doi:10.4271/2015-24-2443.
  7. Lopez, J., Martin, J., Garcia, A., Villalta, D. et al., "Characterization of In-Cylinder Soot Oxidation Using Two-Color Pyrometry in a Production Light-Duty Diesel Engine," SAE Technical Paper 2016-01-0735, 2016, doi:10.4271/2016-01-0735.
  8. Benajes, J., Martin, J., Garcia, A., Villalta, D., Warey A. “In-cylinder soot radiation heat tranfer in direct-injection diésel engines”. Energy Conversion and Management 106 (2015) 414-427.
  9. Serrano, J., Olmeda, P., Tiseira, A., García-Cuevas, L. et al., "Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions," SAE Int. J. Engines 6(2):729-738, 2013, doi:10.4271/2013-01-0577.
  10. Benajes, J. et al., “Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications”, Appl. Therm. Eng., 58(1-2), 181-193, doi:10.1016/j.applthermaleng.2013.03.050.
  11. Benajes J., Molina S., García A., Monsalve-Serrano J., “Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine.” Energy, Volume 90, October 2015, Pages 1261-1271.
  12. Benajes J., García A., Pastor José M., Monsalve-Serrano J., “Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads.” Energy, Volume 98, 1 March 2016, Pages 64-77.
  13. Benajes J., García A., Monsalve-Serrano J., Balloul I., Pradel G., “An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel.” Energy Conversion and Management, Volume 123, 1 September 2016, Pages 381-391.
  14. Miles, P., "The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load," SAE Technical Paper 2000-01-1829, 2000, doi:10.4271/2000-01-1829.
  15. Heywood J., “Internal Combustion Engines Fundamentals,” McGraw-Hill, New York, 1988.
  16. Dembinski, H. and Angstrom, H., "Swirl and Injection Pressure Impact on After-Oxidation in Diesel Combustion, Examined with Simultaneous Combustion Image Velocimetry and Two Colour Optical Method," SAE Technical Paper 2013-01-0913, 2013, doi:10.4271/2013-01-0913.
  17. Arrègle J., Pastor J.V., López J.J., García A. “Insights on postinjection-associated soot emissions in direct injection diesel engines”. Combustion and flame 154 (2008), 448-461. doi: 10.1016/j.combustflame.2008.04.021.
  18. Kawashima J. ichi, “Research on a variable swirl 551 intake port for high-speed 4-valve (DI) diesel engine,” (JSAE) Review 20 (3) (1999) 421 - 552 424. doi:http://dx.doi.org/10.1016/S0389-4304(99)00025-9.
  19. Payri F, Lujan JM, Martín J, Abbad A. “Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines.” Mech Syst Signal Process 2010;24:1767-84.
  20. DRIVVEN Stand Alone Direct Injector Driver System User’s Manual October 2010. Drivven, INC. 12001 Network Blvd, 110. San Antonio, Texas 78249. Web: www.drivven.com
  21. Payri, F., Olmeda, P., Martin, J., and Carreño, R., "A New Tool to Perform Global Energy Balances in DI Diesel Engines," SAE Int. J. Engines 7(1):43-59, 2014, doi:10.4271/2014-01-0665.
  22. Payri F., Olmeda P., Martín J., García, Antonio. “A complete 0D thermodynamic predictive model for direct injection diesel engines”, Applied Energy (88) (2011) 4632-4641. doi:10.1016/j.apenergy.2011.06.005.
  23. Payri, F., Galindo, J., Martín, J., and Arnau, F., "A Simple Model for Predicting the Trapped Mass in a DI Diesel Engine," SAE Technical Paper 2007-01-0494, 2007, doi:10.4271/2007-01-0494.
  24. Lapuerta M, Armas O, Hernández JJ. “Diagnosis of DI Diesel combustion from in- cylinder pressure signal by estimation of mean thermodynamic properties of the gas”. Appl Thermal Eng 1999;19(5):513-29. http://dx.doi.org/10.1016/S1359-4311(98)00075-1.
  25. Payri F, Molina S, Martín J, Armas O. “Influence of measurement errors and estimated parameters on combustion diagnosis”. Appl Thermal Eng 2006; 26(2-3):226-3, http://dx.doi.o10.1016/j.applthermaleng.2005.05.006.
  26. Payri, F., Margot, X., Gil, A., and Martin, J., "Computational Study of Heat Transfer to the Walls of a DI Diesel Engine," SAE Technical Paper 2005-01-0210, 2005, doi:10.4271/2005-01-0210.
  27. Benajes, J., Olmeda, P., Martín, J. and Carreño, R., “A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling”, Applied Thermal Engineering 71:389-399, 2014, doi:10.1016/j.applthermaleng.2014.07.010.
  28. Olmeda, P., Martin, J., Garcia, A., Blanco, D. et al., "Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine," SAE Technical Paper 2016-01-0646, 2016, doi:10.4271/2016-01-0646.
  29. De la Morena J., Vassallo A. Peterson R.C., Gopalakrishan V., Gao J. “Influence of Swirl Ratio on Combustion System Performance of a 0.4l Single-Cylinder Diesel Engine”. THIESEL 2014 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines.
  30. Way RJB. “Methods for determination of composition and thermodynamic properties of combustion products for internal combustion engine calculations”. P I Mech Eng 1976;190:686e97.
  31. López, J., Martin, J., Garcia, A., Villalta, D., Warey A. “Implementation of two color method to investigate late cycle soot oxidation process in a CI engine under low load conditions”. Applied Thermal Engineering 113 (2017) 878-890.

Cited By