This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine

Journal Article
2016-32-0093
ISSN: 1946-3936, e-ISSN: 1946-3944
Published November 08, 2016 by SAE International in United States
The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine
Sector:
Citation: Neher, D., Scholl, F., Kettner, M., Schwarz, D. et al., "The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine," SAE Int. J. Engines 9(4):2477-2492, 2016, https://doi.org/10.4271/2016-32-0093.
Language: English

References

  1. European Union Energy Roadmap 2050 Brussels 2011
  2. Kerr , T. Combined Heat and Power: Evaluating the Benefits of Greater Global Investement Paris 2008
  3. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit Technische Anleitung zur Reinhaltung der Luft: TA Luft 2002
  4. European Union Commission Regulation (EU) No 813/2013 of 2 August 2013 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for space heaters and combination heaters 2013
  5. Wimmer , A. Gas Engine versus Diesel Engine: A Comparison of Efficiency MTZ industrial 1 1 22 27 2011
  6. Wimmer , A. , Pirker , G. , Zelenka , J. , and Chmela , F. The Potential of Exhaust Gas Recirculation in Large Gas Engines Shanghai, China 2013
  7. Nellen , C. and Boulouchos , K. Aufgeladene Gasmotoren mit AGR und Dreiwege-Katalysator - der Weg zu niedrigsten Emissionen bei hohem Wirkungsgrad und großer Leistungsdichte MTZ 61 1 54 62 2000
  8. Doosje , E. Limits of mixture dilution in gas engines Ph.D. Thesis Eindhoven University 2010
  9. Einewall , P. , Tunestål , P. , and Johansson , B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst SAE Technical Paper 2005-01-0250 2005 10.4271/2005-01-0250
  10. Yan , B. , Yao , M. , Mao , B. , Li , Y. et al. A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation SAE Technical Paper 2015-01-1958 2015 10.4271/2015-01-1958
  11. Lee , S. , Ozaki , K. , Iida , N. , and Sako , T. A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission SAE Int. J. Engines 8 1 238 249 2015 10.4271/2014-32-0108
  12. Pizzirani , N. , Lauer , T. , Geringer , B. Murakami , S. A Numerical Method for Efficiency Optimization on Gas Engines MTZ industrial 1 2 60 67 2012
  13. Tschalamoff , T. Abgasrückführung im mittelschnell laufenden Gasmotor MTZ 65 11 932 939 2004
  14. Tschalamoff , T. and Kauert , L. Potenziale der Abgasrückführung im mittelschnelllaufenden Gasmotor mit offenem Brennraum und Vorkammer 3rd Dessau Gas Engine Conference Dessau, Germany 2003
  15. Bhargava , S. , Clark , N. , and Hildebrand , M. Exhaust Gas Recirculation in a Lean-Burn Natural Gas Engine SAE Technical Paper 981395 1998 10.4271/981395
  16. Peer , J. , Wachtmeister , G. , and Boulouchos , K. Einfluss der Abgasrückführung bei Magerkonzept-Gasmotoren mit extremen Steuerzeiten auf Brennverlauf und Schadstoffemissionen unter Berücksichtigung der Gasqualität FVV Informationstagung Leipzig, Germany 2013
  17. Schöffler , T. , Hoffmann , K. , and Koch , T. Stoichiometric Natural Gas Combustion in a Single Cylinder SI Engine and Impact of Charge Dilution by Means of EGR SAE Technical Paper 2013-24-0113 2013 10.4271/2013-24-0113
  18. Tinaut , Fluixá, F. V. , Giménez , Olavarría, B. , Iglesias , Hoyos, D. Lawes , M. Experimental Determination of the Burning Velocity of Mixtures of n-Heptane and Toluene in Engine-like Conditions Flow, Turbulence and Combustion 89 183 213 2012
  19. Heywood , J. Internal Combustion Engine Fundamentals 1988 McGraw-Hill 0-07-028637-X 1988
  20. Tinaut , Fluixá , Francisco V. , Melgar , A. , Giménez , Olavarría, B. Reyes , M. Characterization of the combustion of biomass producer gas in a constant volume combustion bomb Fuel 89 724 731 2010
  21. Lafuente , Á. Metodología para el diagnóstico de la velocidad de combustión laminar de mezclas de gases combustibles a partir de la medida de la presión instantánea en una bomba de combustión a volumen constante Ph.D. Thesis Universidad de Valladolid 2008
  22. Iglesias , D. Metodología para el estudio de propiedades de combustión de sustancias liquidas a partir de ensayos en bomba de combustión a volumen constante Ph.D. Thesis Universidad de Valladolid 2008
  23. Keppeler , R. Entwicklung und Evaluierung von Verbrennungsmodellen für die Large Eddy Simulation der Hochdruck-Vormischverbrennung Ph.D. Thesis Universität der Bundeswehr München 2013
  24. Gu , X.J. , Haq , M.Z. , Lawes , M. Woolley , R. Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures Combustion and Flame 121 1-2 41 58 2000
  25. Das , A. and Watson , H.C. Development of a Natural Gas Spark Ignition Engine for Optimum Performance Proc. of Inst. Mech. Eng. Part D: J. of Automob. Eng. 211 5 361 378 1997
  26. Nellen , C. and Boulouchos , K. Natural Gas Engines for Cogeneration: Highest Efficiency and Near-Zero-Emissions through Turbocharging, EGR and 3-Way Catalytic Converter SAE Technical Paper 2000-01-2825 2000 10.4271/2000-01-2825

Cited By