This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

Journal Article
ISSN: 1946-3936, e-ISSN: 1946-3944
Published October 17, 2016 by SAE International in United States
A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine
Citation: De Bellis, V., Bozza, F., Siano, D., and Valentino, G., "A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine," SAE Int. J. Engines 9(4):2066-2078, 2016,
Language: English


  1. EEA Technical report No 9/2014, “Annual European Union greenhouse gas inventory”; 1990-2012 and inventory report 2014.
  2. Cipolla, G., Bozza, F., “Spark Ignition Engines: State-of-the-Art and Current Technologies. Future Trends and Developments”. “Handbook of Clean Energy Systems”, pp. 1-35, 2015, John Wiley & Sons Ltd., DOI: 10.1002/9781118991978.hces078.
  3. Wirth, M., Schulte, H., “Downsizing and Stratified Operation - An Attractive Combination Based on a Spray-guided Combustion System,” Intl. Conference on Automotive Technologies, Istanbul 2006.
  4. Fontana, G., Galloni, E., “Variable valve timing for fuel economy improvement in a small spark-ignition engine,” Applied Energy, 86:96-105, 2009, doi:10.1016/j.apenergy.2008.04.009.
  5. Bozza, F., De Bellis, V., Gimelli, A., and Muccillo, M., "Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study," SAE Int. J. Engines 7(1):60-71, 2014, doi:10.4271/2014-01-1064.
  6. Bozza F., De Bellis V., De Masi V., Gimelli A., Muccillo M., “Pre-Lift Valve Actuation Strategy for the Performance Improvement of a DISI VVA Turbocharged Engine”, Energy Procedia 45 (2014) 819 - 828, doi: 10.1016/j.egypro.2014.01.087, ISSN: 1876-6102.
  7. Amann, M., Alger, T., and Mehta, D., "The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines," SAE Int. J. Engines 4(1):235-245, 2011, doi:10.4271/2011-01-0339.
  8. Zhen, X., Wang, Y., Xu, S., Zhu, Y., et al., “The engine Knock analysis- An Overview,” Applied Energy 92: 628-636, 2012, doi:10.1016/j.apenergy.2011.11.079.
  9. Shojaeefard, M. H., Tahani, M., Etghani, M. M., Akbari, M., “Cooled EGR for a Turbo Charged SI Engine to Reduce Knocking and Fuel Consumption,” Int. Journal of Automotive Engineering, Vol. 3, Num. 3, 2013, doi:10.4271/2007-01-3978.
  10. Grandin, B. and Ångström, H., "Replacing Fuel Enrichment in a Turbo Charged SI Engine: Lean Burn or Cooled EGR," SAE Technical Paper 1999-01-3505, 1999, doi:10.4271/1999-01-3505.
  11. Francqueville, L. and Michel, J., "On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load," SAE Int. J. Engines 7(4):1808-1823, 2014, doi:10.4271/2014-01-2628.
  12. Potteau, S., Lutz, P., Leroux, S., Moroz, S. et al., "Cooled EGR for a Turbo SI Engine to Reduce Knocking and Fuel Consumption," SAE Technical Paper 2007-01-3978, 2007, doi:10.4271/2007-01-3978.
  13. Teodosio, L., De Bellis, V., and Bozza, F., "Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System," SAE Int. J. Engines 8(4):1508-1519, 2015, doi:10.4271/2015-01-1244.
  14. Hoppe F, Thewes M, Baumgarten H, Dohmen J. “Water injection for gasoline engines: potentials, challenges, and solutions”, Int J Eng Res 17(1):86-96, 2016.
  15. Soyelmez MS, Ozcan H. “Water injection effects on the performance of four cylinder, LPG fuelled SI engine”, Open Access Sci Rep 2013;2:591.
  16. Bozza F., De Bellis V., Teodosio L., “Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines”, Applied Energy 169: 112-125, 2016.
  17. Busuttil D, Farrugia M. “Experimental investigation on the effect of injecting water to the air to fuel mixture in a spark ignition engine”, MM (Mod Mach) SciJ 2015;1:585-90.
  18. Wagner, R., Edwards, K., Daw, C., Green, J. et al., "On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion," SAE Technical Paper 2006-01-0418, 2006, doi:10.4271/2006-01-0418.
  19. Ozdor, N., Dulger, M., and Sher, E., "Cyclic Variability in Spark Ignition Engines A Literature Survey," SAE Technical Paper 940987, 1994, doi:10.4271/940987.
  20. Ozdor, N., Dulger, M., and Sher, E., "An Experimental Study of the Cyclic Variability in Spark Ignition Engines," SAE Technical Paper 960611, 1996, doi:10.4271/960611.
  21. Karvountzis-Kontakiotis, A., Ntziachristos, L., Samaras, Z., Dimaratos, A. et al., "Experimental Investigation of Cyclic Variability on Combustion and Emissions of a High-Speed SI Engine," SAE Technical Paper 2015-01-0742, 2015, doi:10.4271/2015-01-0742.
  22. Galloni E., “Analyses about parameters that affect cyclic variation in a spark ignition engine”, Applied Thermal Engineering 29:pp.1131-1137, 2009.
  23. Irimescu A, Marchitto L, Merola SS, Tornatore C, Valentino G, “Evaluation of different methods for combined thermodynamic and optical analysis of combustion in spark ignition engines”. Energy Conversion and Management 87:914-927, 2014.
  24. Merola, S., Irimescu, A., Marchitto, L., Tornatore, C. et al., "Flame Contour Analysis through UV-Visible Imaging during Regular and Abnormal Combustion in a DISI Engine," SAE Technical Paper 2015-01-0754, 2015, doi:10.4271/2015-01-0754.
  25. Wagner R. M., Drallmeier J. A., Daw C. S., Origins of Cyclic Dispersion Patterns in Spark Ignition Engines, Proceedings of the 1998 Technical Meeting of the Central States Section of the Combustion Institute.
  26. Siano, D., Bozza, F., D’Agostino, D., and Panza, M., “The Use of Vibrational Signals for On-Board Knock Diagnostics Supported by In-Cylinder Pressure Analyses,” SAE Technical Paper 2014-32-0063, 2014, doi:10.4271/2014-32-0063.
  27. Siano, D., Panza, M., and D'Agostino, D., "Knock Detection Based on MAPO Analysis, AR Model and Discrete Wavelet Transform Applied to the In-Cylinder Pressure Data: Results and Comparison," SAE Int. J. Engines 8(1):1-13, 2015, doi:10.4271/2014-01-2547.
  28. Siano, D. and Bozza, F., "Knock Detection in a Turbocharged S.I. Engine Based on ARMA Technique and Chemical Kinetics," SAE Technical Paper 2013-01-2510, 2013, doi:10.4271/2013-01-2510.
  29. Lyon D. Knock and cyclic dispersion in a spark ignition engine. In: IMechE International Conference on Petroleum Based Fuels and Automotive Applications, London, UK, 1986, pp. 105-115. London, UK: Institution of Mechanical Engineers.
  30. Bozza, F., De Bellis, V., and Siano, D., "A Knock Model for 1D Simulations Accounting for Cyclic Dispersion Phenomena," SAE Technical Paper 2014-01-2554, 2014, doi:10.4271/2014-01-2554.
  31. d'Adamo, A., Breda, S., Fontanesi, S., and Cantore, G., "LES Modelling of Spark-Ignition Cycle-to-Cycle Variability on a Highly Downsized DISI Engine," SAE Int. J. Engines 8(5):2029-2041, 2015, doi:10.4271/2015-24-2403.
  32. Pera, C., Richard, S., and Angelberger, C., "Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1D Engine Models for Reproducing CCV," SAE Technical Paper 2012-01-0127, 2012, doi:10.4271/2012-01-0127.
  33. Millo, F., Rolando, L., Pautasso, E., and Servetto, E., "A Methodology to Mimic Cycle to Cycle Variations and to Predict Knock Occurrence through Numerical Simulation," SAE Technical Paper 2014-01-1070, 2014, doi:10.4271/2014-01-1070.
  34. Poetsch, C., Schuemie, H., Ofner, H., Tatschl, R. et al., "A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation," SAE Technical Paper 2013-24-0030, 2013, doi:10.4271/2013-24-0030.
  35. Poetsch, C., Priesching, P., Schuemie, H., and Tatschl, R., "A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock," SAE Technical Paper 2015-26-0213, 2015, doi:10.4271/2015-26-0213.
  36. Sjeric, M., Kozarac, D., and Taritas, I., "Experimentally Supported Modeling of Cycle-to-Cycle Variations of SI Engine Using Cycle-Simulation Model," SAE Technical Paper 2014-01-1069, 2014, doi:10.4271/2014-01-1069.
  37. Bozza, F., Siano, D., and Torella, E., "Cycle-by-Cycle Analysis, Knock Modeling and Spark-Advance Setting of a “Downsized” Spark-Ignition Turbocharged Engine," SAE Int. J. Engines 2(2):381-389, 2010, doi:10.4271/2009-24-0020.
  38. Fontana, G., Bozza, F., Galloni, E., and Siano, D., "Experimental and Numerical Analyses for the Characterization of the Cyclic Dispersion and Knock Occurrence in a Small-Size SI Engine," SAE Technical Paper 2010-32-0069, 2010, doi:10.4271/2010-32-0069.
  39. Medina A., Curto-Risso, P., L., Hernández, A., C., Guzmán-Vargas, L. et al., “Quasi-Dimensional Simulation of Spark Ignition Engines”, (Springer-Verlag London, 2014), 107-145, doi: 10.1007/978-1-4471-5289-7.
  40. De Bellis, V., Teodosio, L., Siano, D., Minarelli, F. et al., "Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment," SAE Int. J. Engines 8(5):1993-2001, 2015, doi:10.4271/2015-24-2392.
  41. Bozza, F., De Bellis, V., Minarelli, F., and Cacciatore, D., "Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling," SAE Int. J. Engines 8(5):2002-2011, 2015, doi:10.4271/2015-24-2393.
  42. Rhodes, D. and Keck, J., "Laminar Burning Speed Measurements of Indolene-Air-Diluent Mixtures at High Pressures and Temperatures," SAE Technical Paper 850047, 1985, doi:10.4271/850047.
  43. De Bellis, V., Bozza, F., Fontanesi, S., Severi, E. et al., "Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine," SAE Int. J. Engines 9(1):506-519, 2016, doi:10.4271/2016-01-0545.
  44. Thomasson, Andreas, et al. "Experimental Validation of a Likelihood-Based Stochastic Knock Controller.", IEEE Transactions on Control Systems Technology, Vol. PP, Issue:99, pp:1-12, ISSN:1063-6536, DOI:10.1109/TCST.2015.2483566.

Cited By