This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels

Journal Article
2016-01-0755
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 05, 2016 by SAE International in United States
Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels
Sector:
Citation: Blomberg, C., Mitakos, D., Bardi, M., Boulouchos, K. et al., "Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels," SAE Int. J. Engines 9(3):1544-1558, 2016, https://doi.org/10.4271/2016-01-0755.
Language: English

References

  1. Yao M. , Zheng Z. , and Liu H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines Prog. Energy Combust. Sci. 35 5 398 437 2009
  2. Barroso G. Chemical kinetic mechanism reduction, multi-zone and 3D- CRFD Modelling of homogeneous charge compression ignition engines ETH Zurich PhD Thesis 16437 2006
  3. Aceves , S. , Flowers , D. , Westbrook , C. , Smith , J. et al. A Multi-Zone Model for Prediction of HCCI Combustion and Emissions SAE Technical Paper 2000-01-0327 2000 10.4271/2000-01-0327
  4. Visakhamoorthy S. , Tzanetakis T. , Haggith D. , Sobiesiak A. , and Wen J. Z. Numerical study of a homogeneous charge compression ignition (HCCI) engine fueled with biogas Appl. Energy 92 437 446 Apr. 2012
  5. Aceves , S. , Flowers , D. , Martinez-Frias , J. , Espinosa-Loza , F. et al. Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling SAE Technical Paper 2005-01-2134 2005 10.4271/2005-01-2134
  6. Zheng , J. , Miller , D. , and Cernansky , N. A Global Reaction Model for the HCCI Combustion Process SAE Technical Paper 2004-01-2950 2004 10.4271/2004-01-2950
  7. Vandersickel A. , Wright Y. M. , and Boulouchos K. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels Combust. Theory Model. 2013
  8. Voglsam S. and Winter F. A global combustion model for simulation of n-heptane and iso-octane self ignition Chem. Eng. J. 203 357 369 Sep. 2012
  9. Gowdagiri S. and Oehlschlaeger M. A. Global Reduced Model for Conventional and Alternative Jet and Diesel Fuel Autoignition Energy & Fuels 28 4 2795 2801 Apr. 2014
  10. Wang H. , Yao M. , and Reitz R. D. Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations Energy & Fuels 27 12 7843 7853 Nov. 2013
  11. Brakora , J. and Reitz , R. A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations SAE Technical Paper 2013-01-1099 2013 10.4271/2013-01-1099
  12. Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion Proc. Combust. Inst. 32 2 2835 2841 2009
  13. Prince J. C. , Williams F. A. , and Ovando G. E. A short mechanism for the low-temperature ignition of n-heptane at high pressures Fuel 149 138 142 Jun. 2015
  14. Curran H. J. , Pitz W. J. , Westbrook C. K. , Callahan G. V , and Dryer F. L. Oxidation of automotive primary reference fuels at elevated pressures Symp. Int. Combust. 27 1 379 387 1998
  15. Westbrook C. K. , Pitz W. J. , Herbinet O. , Curran H. J. , and Silke E. J. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane Combust. Flame 156 1 181 199 Jan. 2009
  16. Saisirirat P. , Togbé C. , Chanchaona S. , Foucher F. , Mounaim-Rousselle C. , and Dagaut P. Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends Proc. Combust. Inst. 33 2 3007 3014 Jan. 2011
  17. Mehl M. , Pitz W. J. , Westbrook C. K. , and Curran H. J. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions Proc. Combust. Inst. 33 1 193 200 2011
  18. Singh S. , Reitz R. D. , Musculus M. P. B. , and Lachaux T. Validation of engine combustion models against detailed in-cylinder optical diagnostics data for a heavy-duty compression-ignition engine Int. J. Engine Res. 8 1 97 126 Feb. 2007
  19. Salehi F. , Talei M. , Hawkes E. R. , Yoo C. S. , Lucchini T. , D’Errico G. , and Kook S. Conditional moment closure modelling for HCCI with temperature inhomogeneities Proc. Combust. Inst. 35 3 3087 3095 2015
  20. Bolla M. , Farrace D. , Wright Y. M. , and Boulouchos K. Modelling of soot formation in a heavy-duty diesel engine with conditional moment closure Fuel 117 309 325 Jan. 2014
  21. Farrace , D. , Bolla , M. , Wright , Y. , and Boulouchos , K. Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC SAE Int. J. Engines 7 1 256 268 2014 10.4271/2014-01-1134
  22. Zhen X. and Wang Y. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics Energy Convers. Manag. 96 188 196 May 2015
  23. Luong M. B. , Lu T. , Chung S. H. , and Yoo C. S. Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature Combust. Flame 161 11 2878 2889 Nov. 2014
  24. Sankaran R. , Im H. G. , Hawkes E. R. , and Chen J. H. The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture Proc. Combust. Inst. 30 1 875 882 Jan. 2005
  25. Bolla M. , Schmitt M. , Hawkes E. R. , and Boulouchos K. A DNS study of ignition characteristics of a lean H2/air mixture under HCCI conditions within an enclosed geometry including wall heat transfer 15th International Conference on Numerical Combustion 2015
  26. Farrell , J. , Cernansky , N. , Dryer , F. , Law , C. et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels SAE Technical Paper 2007-01-0201 2007 10.4271/2007-01-0201
  27. Pitz , W. , Cernansky , N. , Dryer , F. , Egolfopoulos , F. et al. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels SAE Technical Paper 2007-01-0175 2007 10.4271/2007-01-0175
  28. Andrae J. C. G. and Head R. A. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model Combust. Flame 156 4 842 851 Apr. 2009
  29. Akih-Kumgeh B. and Bergthorson J. M. Comparative Study of Methyl Butanoate and n-Heptane High Temperature Autoignition Energy & Fuels 24 4 2439 2448 Apr. 2010
  30. Davidson D. F. and Hanson R. K. Interpreting shock tube ignition data Int. J. Chem. Kinet. 36 9 510 523 2004
  31. Beck S. A. Beschreibung des Zündverzuges von dieselähnlichen Kraftstoffen im HCCI-Betrieb Univ. Stuttgart PhD Thesis 2012
  32. Shahbakhti M. and Koch C. R. Physics Based Control Oriented Model for HCCI Combustion Timing J. Dyn. Syst. Meas. Control 132 2 21010 Feb. 2010
  33. Rausen D. J. , Stefanopoulou A. G. , J.-Kang M. , Eng J. A. , and Kuo T.-W. A Mean-Value Model for Control of Homogeneous Charge Compression Ignition (HCCI) Engines J. Dyn. Syst. Meas. Control 127 3 355 362 Aug. 2004
  34. He X. , Zigler B. T. , Walton S. M. , Wooldridge M. S. , and Atreya A. A rapid compression facility study of OH time histories during iso-octane ignition Combust. Flame 145 3 552 570 May 2006
  35. Hernández J. J. , Sanz-Argent J. , Carot J. M. , and Jabaloyes J. M. Ignition delay time correlations for a diesel fuel with application to engine combustion modelling Int. J. Engine Res. 11 3 199 206 2010
  36. Yates A. , Bell A. , and Swarts A. Insights relating to the autoignition characteristics of alcohol fuels Fuel 89 1 83 93 Jan. 2010
  37. Goldsborough S. S. A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region Combust. Flame 156 6 1248 1262 Jun. 2009
  38. Steurs , K. , Blomberg , C. , and Boulouchos , K. Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas SAE Int. J. Engines 7 4 1752 1772 2014 10.4271/2014-01-2607
  39. Weisser G. A. Modelling of Combustion and Nitric Oxide Formation for Medium-Speed DI Diesel Engines: A comparative Evaluation of Zero- and Three-Dimensional Approaches ETH Zurich PhD Thesis 14465 2001
  40. Campbell M. F. , Davidson D. F. , and Hanson R. K. Scaling relation for high-temperature biodiesel surrogate ignition delay times Fuel 2015
  41. Musculus M. P. B. , Miles P. C. , and Pickett L. M. Conceptual models for partially premixed low-temperature diesel combustion Prog. Energy Combust. Sci. 39 246 283 2013
  42. Dec , J. , Hwang , W. , and Sjöberg , M. An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging SAE Technical Paper 2006-01-1518 2006 10.4271/2006-01-1518
  43. Schmitt M. , Frouzakis C. E. , Tomboulides A. G. , Wright Y. M. , and Boulouchos K. Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions Proc. Combust. Inst. Jul. 2014
  44. Sherazi H. Iqbal and Li Y. Homogeneous Charge Compression Ignition engine: A technical review Automation and Computing (ICAC), 2011 17th International Conference on 2011 315 320
  45. Herold , R. , Krasselt , J. , Foster , D. , Ghandhi , J. et al. Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion - Part II: Optical Engine Results SAE Int. J. Engines 2 1 1034 1053 2009 10.4271/2009-01-1106
  46. Goldsborough S. S. , Banyon C. , and Mittal G. A computationally efficient, physics-based model for simulating heat loss during compression and the delay period in RCM experiments Combust. Flame 159 12 3476 3492 Dec. 2012
  47. Lim O. T. and Iida N. The investigation about the effects of thermal stratification in combustion chamber on HCCI combustion fueled with DME/n-Butane using Rapid Compression Machine Exp. Therm. Fluid Sci. 39 123 133 May 2012
  48. Stanglmaier , R. and Roberts , C. Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications SAE Technical Paper 1999-01-3682 1999 10.4271/1999-01-3682
  49. Yu , R. , Bai , X. , Vressner , A. , Hultqvist , A. et al. Effect of Turbulence on HCCI Combustion SAE Technical Paper 2007-01-0183 2007 10.4271/2007-01-0183
  50. Saxena S. and Bedoya I. D. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits Prog. Energy Combust. Sci. 39 5 457 488 Oct. 2013
  51. Tanaka S. , Ayala F. , Keck J. C. , and Heywood J. B. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives Combust. Flame 132 1-2 219 239 2003
  52. Yao , M. , Liu , H. , Zhang , B. , and Zheng , Z. An Investigation on the Effects of Fuel Chemistry and Engine Operating Conditions on HCCI Engine SAE Technical Paper 2008-01-1660 2008 10.4271/2008-01-1660
  53. Vandersickel A. , Hartmann M. , Vogel K. , Wright Y. M. , Fikri M. , Starke R. , Schulz C. , and Boulouchos K. The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling Fuel 93 492 501 Mar. 2011
  54. Mitakos D. A. Experimental Investigations for Phenomenological Modelling of Two-Stage Auto-Ignition under HCCI Conditions ETH Zurich PhD Thesis 22323 2014
  55. Goldsborough , S. Evaluating the Heat Losses from HCCI Combustion within a Rapid Compression Expansion Machine SAE Technical Paper 2006-01-0870 2006 10.4271/2006-01-0870
  56. Vandersickel A. Two Approaches to Auto-ignition Modelling for HCCI Applications ETH Zurich PhD Thesis 19965 2011
  57. Livengood J. C. and Wu P. C. Correlation of autoignition phenomena in internal combustion engines and rapid compression machines Symp. Combust. 5 1 347 356 Jan. 1955
  58. Bardi M. , Blomberg C. , Mitakos D. A. , Schneider B. , Wright Y. M. , and Boulouchos K. Effect of fuel composition and in cylinder conditions on HCCI combustion in an optically accessible Rapid Compression Expansion Machine Prog.
  59. Schlatter , S. , Schneider , B. , Wright , Y. , and Boulouchos , K. Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine SAE Technical Paper 2012-01-0825 2012 10.4271/2012-01-0825
  60. Mitakos , D. , Blomberg , C. , Wright , Y. , Obrecht , P. et al. Integration of a Cool-Flame Heat Release Rate Model into a 3-Stage Ignition Model for HCCI Applications and Different Fuels SAE Technical Paper 2014-01-1268 2014 10.4271/2014-01-1268
  61. Mitakos , D. , Blomberg , C. , Vandersickel , A. , Wright , Y. et al. Ignition Delays of Different Homogeneous Fuel-air Mixtures in a Rapid Compression Expansion Machine and Comparison with a 3-Stage-ignition Model Parameterized on Shock Tube Data SAE Int. J. Engines 6 4 1934 1952 2013 10.4271/2013-01-2625
  62. Grogan K. P. , Goldsborough S. Scott , and Ihme M. Ignition regimes in rapid compression machines Combust. Flame 162 8 3071 3080 Aug. 2015
  63. Schmitt M. , Frouzakis C. E. , Wright Y. M. , Tomboulides A. G. , and Boulouchos K. Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS Int. J. Engine Res. Jun. 2015
  64. Schmitt M. Direct numerical simulations in engine-like geometries ETH Zurich PhD Thesis 22284 2014
  65. Sung C.-J. and Curran H. J. Using rapid compression machines for chemical kinetics studies Prog. Energy Combust. Sci. 44 1 18 Oct. 2014

Cited By