This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (iso-Octane)

Journal Article
2016-01-0551
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 05, 2016 by SAE International in United States
The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (iso-Octane)
Sector:
Citation: DelVescovo, D., Kokjohn, S., and Reitz, R., "The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (iso-Octane)," SAE Int. J. Engines 9(1):520-535, 2016, https://doi.org/10.4271/2016-01-0551. Erratum published in SAE Int. J. Engines 10(3):1383, 2017, https://doi.org/10.4271/2016-01-0551.01. Erratum published in SAE Int. J. Engines 10(3):1383, 2017, https://doi.org/10.4271/2016-01-0551.01.
Language: English

References

  1. Heywood , J. B. Internal Combustion Engine Fundamentals McGraw-Hill 1988
  2. Najt , P. and Foster , D. Compression-Ignited Homogeneous Charge Combustion SAE Technical Paper 830264 1983 10.4271/830264
  3. Stanglmaier , R. and Roberts , C. Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications SAE Technical Paper 1999-01-3682 1999 10.4271/1999-01-3682
  4. Epping , K. , Aceves , S. , Bechtold , R. , and Dec , J. The Potential of HCCI Combustion for High Efficiency and Low Emissions SAE Technical Paper 2002-01-1923 2002 10.4271/2002-01-1923
  5. Aoyama , T. , Hattori , Y. , Mizuta , J. , and Sato , Y. An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine SAE Technical Paper 960081 1996 10.4271/960081
  6. Kokjohn , S. , Hanson , R. , Splitter , D. , and Reitz , R. Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending SAE Int. J. Engines 2 2 24 39 2010 10.4271/2009-01-2647
  7. Kokjohn , S. , Reitz , R. , Splitter , D. , and Musculus , M. Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence SAE Int. J. Engines 5 2 248 269 2012 10.4271/2012-01-0375
  8. Splitter , D. , Wissink , M. , Kokjohn , S. , and Reitz , R. Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency SAE Technical Paper 2012-01-0383 2012 10.4271/2012-01-0383
  9. Goldsborough , S. A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region Combustion and Flame 156 1248 1262 2009
  10. Lawler , B. , Hoffman , M. , Filipi , Z. , Guralp , O. , Najt , P. Development of a Postprocessing Methodology for Studying Thermal Stratification in an HCCI Engine ASME J. Eng. Gas Turbines Power 134 1 102801: 1 7 2012 10.1115/1.4007010
  11. Kozarac , D. , Tomic , R. , Taritas , I. , Chen , J. et al. A Model for Prediction of Knock in the Cycle Simulation by Detail Characterization of Fuel and Temperature Stratification SAE Int. J. Engines 8 4 1520 1534 2015 10.4271/2015-01-1245
  12. Ohashi , T. , Yang , X. , Takabayashi , T. , Urata , Y. et al. Ignition and Combustion Simulation in HCCI Engines SAE Technical Paper 2006-01-1522 2006 10.4271/2006-01-1522
  13. Curran , H.J. , Gaffuri , P. , Pitz , W.J. , Westbrook , C.K. A comprehensive modeling study of iso-octane oxidation Combustion and Flame 129 3 253 280 May 2002 10.1016/S0010-2180(01)00373-X
  14. Curran , H.J. , Gaffuri , P. , Pitz , W.J. , Westbrook , C.K. A comprehensive modeling study of n-heptane oxidation Combustion and Flame 114 149 177 1998
  15. He. X. , Donovan , M , Zigler , B. , Palmer , T. , Walton , S. et al. An Experimental and Modeling Study of Iso-Octane Ignition Delay Times Under Homogeneous Charge Compression Ignition Conditions Combustion and Flame 142 266 275 2005
  16. Davidson , D.F. , Hanson , R.K. Interpreting Shock Tube Ignition Data WSSCI Fall 2003 Meeting 2003
  17. Horning D. C. , Davidson D. F. , and Hanson R. K. Study of the High-Temperature Autoignition of n-Alkane/O/Ar Mixtures Journal of Propulsion and Power 18 2 363 371 2002 10.2514/2.5942
  18. Goldsborough , S. , Smith , T. , Johnson , M. , and McConnell , S. Evaluation of Ignition Timing Predictions Using Control-Oriented Models in Kinetically-Modulated Combustion Regimes SAE Technical Paper 2012-01-1136 2012 10.4271/2012-01-1136
  19. Shahbakhti , M. , Lupul , R. , and Koch , C. Predicting HCCI Auto-Ignition Timing by Extending a Modified Knock-Integral Method SAE Technical Paper 2007-01-0222 2007 10.4271/2007-01-0222
  20. Swan , K. , Shahbakhti , M. , and Koch , C. Predicting Start of Combustion Using a Modified Knock Integral Method for an HCCI Engine SAE Technical Paper 2006-01-1086 2006 10.4271/2006-01-1086
  21. Mehl M. , Chen J.Y. , Pitz W.J. , Sarathy S.M. , Westbrook C.K. An Approach for Formulating Surrogates for Gasoline with Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling Energy and Fuels , 25 5215 5223 2011
  22. Lu , T. , Law C.K. Toward accommodating realistic fuel chemistry in large-scale computations Prog. Energy Combust. Sci. 35 192 215 2009
  23. Mehl M. , Pitz W.J. , Westbrook C.K. , Curran H.J. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions Proceedings of the Combustion Institute 33 193 200 2011
  24. Livengood , J. , Wu , P. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Proceedings of the Fifth International Symposium on Combustion Pittsburgh, PA Aug 30-Sep 3, 1954 Reinhold, New York 347 356
  25. Kalghatgi , G. , Babiker , H. , and Badra , J. A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates SAE Int. J. Engines 8 2 505 519 2015 10.4271/2015-01-0757
  26. Bradley , D. Head , RA. Engine autoignition: the relationship between octane numbers and autoignition delay times Combustion and Flame 147 171 184 2006
  27. Hernandez , J. , Lapuerta , M. , Sanz-Argent , J. Autoignition prediction capability of the Livengood-Wu correlation applied to fuels of commercial interest International Journal of Engine Research 15 817 829 2014
  28. Chang , J. , Filipi , Z. , Assanis , D. , Juo , T. et al. Characterizing the Thermal Sensitivity of a Gasoline Homogeneous Charge Compression Ignition Engine with Measurements of Instantaneous Wall Temperature and Heat Flux International Journal of Engine Research 6 4 289 309
  29. Fiveland , S. and Assanis , D. Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects SAE Technical Paper 2001-01-1028 2001 10.4271/2001-01-1028
  30. Yun , H. and Mirsky , W. Schlieren-Streak Measurements of Instantaneous Exhaust Gas Velocities from a Spark-Ignition Engine SAE Technical Paper 741015 1974 10.4271/741015
  31. Gatowski , J. , Balles , E. , Chun , K. , Nelson , F. et al. Heat Release Analysis of Engine Pressure Data SAE Technical Paper 841359 1984 10.4271/841359
  32. Klein , M. and Eriksson , L. A Specific Heat Ratio Model for Single-Zone Heat Release Models SAE Technical Paper 2004-01-1464 2004 10.4271/2004-01-1464
  33. Chang , J. , Güralp , O. , Filipi , Z. , Assanis , D. et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux SAE Technical Paper 2004-01-2996 2004 10.4271/2004-01-2996
  34. Krieger , R. , Borman , G. The computation of apparent heat release for internal combustion engines ASME 1967
  35. Brunt , M. , Rai , H. , and Emtage , A. The Calculation of Heat Release Energy from Engine Cylinder Pressure Data SAE Technical Paper 981052 1998 10.4271/981052

Cited By