This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling

Journal Article
2015-24-2393
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 06, 2015 by SAE International in United States
Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling
Sector:
Citation: Bozza, F., De Bellis, V., Minarelli, F., and Cacciatore, D., "Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling," SAE Int. J. Engines 8(5):2002-2011, 2015, https://doi.org/10.4271/2015-24-2393.
Language: English

References

  1. Galloni, E., “Analyses about parameters that affect cyclic variation in a spark ignition engine”, Applied Thermal Engineering 29 (5):1131-1137, 2009, doi:10.1016/j.applthermaleng.2008.06.001.
  2. Stone, C., Brown, A., and Beckwith, P., “Cycle-by-Cycle Variations in Spark Ignition Engine Combustion - Part II: Modelling of Flame Kernel Displacements as a Cause of Cycle-by-Cycle Variations,” SAE Technical Paper 960613, 1996, doi:10.4271/960613.
  3. Holmström, K. and Denbratt, I., “Cyclic Variation in an SI Engine Due to the Random Motion of the Flame Kernel,” SAE Technical Paper 961152, 1996, doi:10.4271/961152.
  4. Matthews, R. and Chin, Y., “A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data,” SAE Technical Paper 910079, 1991, doi:10.4271/910079.
  5. Poulos, S. and Heywood, J., “The Effect of Chamber Geometry on Spark-Ignition Engine Combustion,” SAE Technical Paper 830334, 1983, doi:10.4271/830334.
  6. Verhelst, S. and Sheppard C. “Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview”, Energy Conversion and Management 50(5): 1326-1335, 2009, doi:10.1016/j.enconman.2009.01.002.
  7. Rakopoulos, C., Michos, C., and Giakoumis, E., “Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model,” SAE Int. J. Engines 2(1):880-910, 2009, doi:10.4271/2009-01-0931.
  8. Franke, C., Wirth, A. and Peters, N., “New Aspects of the Fractal Behaviour of Turbulent Flames” 23 Symp. (Int.) on Combustion, Orleans, 1990.
  9. Gatowsky, J. and Heywood J. “Flame Photographs in a Spark-Ignition Engine”, Combustion and Flame 56(1):71-81, 1984, doi:10.1016/0010-2180(84)90006-3.
  10. Gouldin, F. “An application of Fractals to Modeling Premixed Turbulent Flames” Combustion and Flame 68(3):249-266, 1987, doi:10.1016/0010-2180(87)90003-4.
  11. Millo, F., Rolando, L., Pautasso, E., and Servetto, E., “A Methodology to Mimic Cycle to Cycle Variations and to Predict Knock Occurrence through Numerical Simulation,” SAE Technical Paper 2014-01-1070, 2014, doi:10.4271/2014-01-1070.
  12. Sjeric, M., Kozarac, D., and Taritas, I., “Experimentally Supported Modeling of Cycle-to-Cycle Variations of SI Engine Using Cycle-Simulation Model,” SAE Technical Paper 2014-01-1069, 2014, doi:10.4271/2014-01-1069.
  13. Pera, C., Richard, S., and Angelberger, C., “Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1D Engine Models for Reproducing CCV,” SAE Technical Paper 2012-01-0127, 2012, doi:10.4271/2012-01-0127.
  14. Bozza, F., Siano, D., and Torella, E., “Cycle-by-Cycle Analysis, Knock Modeling and Spark-Advance Setting of a “Downsized” Spark-Ignition Turbocharged Engine,” SAE Int. J. Engines 2(2):381-389, 2010, doi:10.4271/2009-24-0020.
  15. Fontana, G., Bozza, F., Galloni, E., and Siano, D., “Experimental and Numerical Analyses for the Characterization of the Cyclic Dispersion and Knock Occurrence in a Small-Size SI Engine,” SAE Technical Paper 2010-32-0069, 2010, doi:10.4271/2010-32-0069.
  16. Livengood, J. and Wu, P., “Correlation of Autoignition Phenomenon in Internal Combustion Engines and Rapid Compression Machines”, Fifth Symposium (International) on Combustion 5(1): 347-356, 1955, doi:10.1016/S0082-0784(55)80047-1.
  17. Douaud, A. and Eyzat, P., “Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines,” SAE Technical Paper 780080, 1978, doi:10.4271/780080.
  18. De Bellis, V., Severi, E., Fontanesi, S. and Bozza, F., “Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model applied to a VVA Turbocharged Engine. Part II: Combustion Model,” Energy Procedia 45: 1027-1036, 2014, doi:10.1016/j.egypro.2014.01.108.
  19. De Bellis, V., Severi, E., Fontanesi, S. and Bozza, F., “Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model applied to a VVA Turbocharged Engine. Part I: Turbulence Model,” Energy Procedia 45:829-838, 2014, doi:10.1016/j.egypro.2014.01.088.
  20. Cipolla, G., “Heat transfer correlations applicable to the analysis of internal combustion engine head cooling”, Heat and Mass Transfer in Gasoline and Diesel Engines, Proceedings of the International Center for Heat and Mass Transfer, Afgan and Spalding, 1988, pp. 373-396.
  21. Bozza, F., De Bellis, V., and Siano, D., “A Knock Model for 1D Simulations Accounting for Cyclic Dispersion Phenomena,” SAE Technical Paper 2014-01-2554, 2014, doi:10.4271/2014-01-2554.
  22. Andrae, J., Headb, R., “HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model”, Combustion and Flame 156:842-851, 2009, doi:10.1016/j.combustflame.2008.10.002.
  23. Andrae, J., “Comprehensive chemical kinetic modeling of toluene reference fuels oxidation”, Fuel 107:740-748, 2013, doi:10.1016/j.fuel.2013.01.070.
  24. Liu, Y., Jia, M., Xie, M., Pang, B., “Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation” Energy Fuels 27 (8):4899-4909, 2013, doi:10.1021/ef4009955.
  25. Gauthier, B., Davidson, D. and Hanson, R., “Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures”, Combust. Flame 139 (4):300-311, 2004, doi:10.1016/j.combustflame.2004.08.015.

Cited By