This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Lattice-Boltzmann Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
Technical Paper
2015-01-2084
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
A Lattice-Boltzmann approach is used to simulate the aerodynamics of complex three-dimensional ice shapes on a NACA 23012 airfoil. The digitally produced high fidelity geometrical ice shapes were created using a novel laser scanning technique in the NASA Icing Research Tunnel. The geometrically fully resolved unsteady simulations are conducted on two ice shapes representing a roughness type and a horn type icing on the leading edge of the airfoil. Comparisons between simulation and experiment of lift, drag, and pitching moment as well as pressure distributions indicate overall a good qualitative agreement in capturing the aerodynamic degradation. Especially for the horn-type ice shape, the quantitative agreement is also mostly very good. Analysis of the flow structures indicates furthermore a good capturing of the three-dimensional separation behavior of the flow.
Recommended Content
Technical Paper | Evaluation of Different Ice Adhesion Tests for Mechanical Deicing Systems |
Technical Paper | Ice Adhesion Performance of Superhydrophobic Coatings in Aerospace Icing Conditions |
Authors
Topic
Citation
König, B., Fares, E., and Broeren, A., "Lattice-Boltzmann Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil," SAE Technical Paper 2015-01-2084, 2015, https://doi.org/10.4271/2015-01-2084.Also In
References
- Slotnick J. , Khodadoust A. , Alonso J. , Darmofal D. , Gropp W. , Lurie E. and Mavriplis D. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences NASA Langley Research Center 2014
- Bragg M. , Broeren A. and Blumenthal L. Iced-Airfoil Aerodynamics Progress in Aerospace Sciences 41 5 323 418 July 2005 10.1016/j.paerosci.2005.07.001
- Potapczuk M. G. Numerical analysis of an NACA 0012 airfoil with leading-edge ice accretions Journal of Aircraft 25 3 193 194 1988 10.2514/3.45576
- Dunn T. , Loth E. and Bragg M. Computational Investigation of Simulated Large-Droplet Ice Shapes on Airfoil Aerodynamics Journal of Aircraft 36 5 836 843 1999 10.2514/2.2517
- Kumar S. and Loth E. Aerodynamic Simulations of Airfoils with Upper Surface Ice Shapes Journal of Aircraft 38 2 285 295 2001 10.2514/2.2761
- Pan J. and Loth E. Reynolds-Averaged Navier-Stokes Simulations of Airfoils and Wings with Ice Shapes Journal of Aircraft 41 4 879 891 2004 10.2514/1.587
- Thompson D. , Mogili P. , Chalasani S. , Addy H. and Choo Y. A Computational Icing Effects Study for a Three-Dimensional Wing 42nd AIAA Aerospace Sciences Meeting and Exhibit , AIAA Paper 2004-561 2004 10.2514/6.2004-561
- Pan J. and Loth E. Detached Eddy Simulations for Iced Airfoils Journal of Aircraft 42 6 1452 1461 2005 10.2514/1.11860
- Duclercq M. , Brunet V. and Moens F. Physical Analysis of the Separated Flow around and Iced Airfoil based on ZDES Simulations 4th AIAA Atmospheric and Space Environments Conference , AIAA Paper 2012-2798 2012 10.2514/6.2012-2798
- Brown C. , Kunz R. , Kinzel M. , Lindau J. , Palacios J. and Brenter K. RANS and LES Simulation of Airfoil Ice Accretion Aerodynamics 6th AIAA Atmospheric and Space Environments Conference , AIAA Paper 2014-2203 2014 10.2514/6.2014-2203
- Alam M. , Thompson D. and Walters D. Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation Methods for Flow Around and Iced Wing Journal of Aircraft 52 1 244 256 2015 10.2514/1.C032678
- Jun G. , Oliden D. , Potapczuk M. and Tsao J.-C. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil 6th AIAA Atmospheric and Space Environments Conference , AIAA Paper 2014-2202 2014 10.2514/6.2014-2202
- Chi X. , Li Y. , Chen H. , Addy H. , Choo Y. and Shih T.-P. A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics 43rd Aerospace Sciences Meeting and Exhibit , AIAA Paper 2005-1371 2005 10.2514/6.2005-1371
- Lee S. , Broeren A. , Kreeger R. , Potapczuk M. and Utt L. Implementation and Validation of 3-D Ice Accretion Measurement Methodology 6th AIAA Atmospheric and Space Environments Conference , AIAA Paper 2014-2613 2014 10.2514/6.2014-2613
- Broeren A. , Addy H. J. , Lee S. and Monastero M. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation 6th AIAA Atmospheric and Space Environments Conference , AIAA Paper 2014-2614 2014 10.2514/6.2014-2614
- Broeren A. , Addy H. J. , Bragg M. , Busch G. , Guffond D. and Montreuil E. Aerodynamic Simulation of Ice Accretion on Airfoils NASA/TP-2001-216929 2011
- Chen H. Volumetric Formulation of the Lattice-Boltzmann Method for Fluid Dynamics: Basic Concept Physical Review E 58 3 3955 3963 1998 10.1103/PhysRevE.58.3955
- Chen H. , Texeira C. and Molvig K. Realization of FLuid Boundary Condition via Discrete Boltzmann Dynamics Int. Journal of Modern Physics C 9 8 1281 1292 1998 10.1142/S0129183198001151
- Chen H. , Kandasamy S. , Orszag S. , Shock R. , Succi S. and Yakhot V. Extended Boltzmann Kinetic Equation for Turbulent Flows Science 301 5633 633 636 2003 10.1126/science.1085048
- Chen S. and Doolen G. D. Lattice Boltzmann Method for Fluid Flows Annual Review of Fluid Mechanics 30 29 364 1998 10.1146/annurev.fluid.30.1.329
- Chen H. , Chen S. and Matthaeus W. H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method Physical Review A 45 8 R5339 R5342 1992 10.1103/PhysRevA.45.R5339
- Qian Y. H. , D'Humières D. and Lallemand P. Lattice BGK Models for Navier-Stokes Equation Europhysics Letters 17 479 484 1992 10.1209/0295-5075/17/6/001
- Shan X. , Yuan X.-F. and Chen H. Kinetic theory representation of hydrodynamics:a way beyond the Navier-Stokes equation Journal of Fluid Mechanics 550 413 441 2006 10.1017/S0022112005008153
- Zhang R. , Shan X. and Chen H. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation Physical Review E 74 046703 2006 0.1103/PhysRevE.74.046703
- Marié S. , Ricot D. and Sagaut P. Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics Journal of Computational Physics 228 1056 1070 2009 10.1016/j.jcp.2008.10.021
- Manoha E. Category 5 Results Summary: ONERA/Airbus LAGOON Simplified Landing Gear configuration Third AIAA Workshop on Benchmark Problems for Airframe Noise Computations 2014
- Khorrami M. , Fares E. and Casalino D. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations 20th AIAA/CEAS Aeroacoustics Conference , AIAA Paper 2014-2481 2014 10.2514/6.2014-2481
- Khorrami M. R. and Mineck R. E. Towards Full Aircraft Airframe Noise Prediction: Detached Eddy Simulations 20th AIAA/CEAS Aeroacoustics Conference , AIAA paper 2014-2480 2014 10.2514/6.2014-2480
- Lockard D. P. Summary of the Tandem Cylinder Solutions from the Benchmark problems for Airframe Noise Computations-I Workshop 49th AIAA Aerospace Sciences Meeting , AIAA paper 2011-353 2011 10.2514/6.2011-353
- Yakhot V. and Orszag S. Renormalization Group Analysis of Turbulence Journal of Scientific Computing 1 2 3 51 1986 10.1007/BF01061452
- Menter F. , Kuntz M. and Bender R. A Scale Adaptive Simulation Model for Turbulent Flow Predictions 41st Aerospace Sciences Meeting and Exhibit , AIAA Paper 2003-0767 2003 10.2514/6.2003-767
- Chen H. , Orszag S. , Staroselsky I. and Succi S. Expanded Analogy between Boltzmann Kinetic Theory of Fluid and Turbulence Journal of FLuid Mechanics 519 307 314 2004 10.1017/S0022112004001211
- Fares E. Unsteady Flow Simulation of the Ahmed Reference Body using a Lattice Boltzmann Approach Journal of Computers and Fluids 35 8 940 950 2006 10.1016/j.compfluid.2005.04.011
- Noelting S. , Fares E. and Keating A. Simulations of the Trapwing Case with PowerFLOW HiLiftPW-1 Workshop 2010
- König B. , Fares E. , Noelting S. , Jammalamadaka A. and Li Y. Investigation of the NACA 4412 Trailing Edge Separation using a Lattice-Boltzmann Approach 44th AIAA Fluid Dynamics Conference , AIAA Paper 2014-3324 2014
- Mavriplis D. J. , Vassberg J. C. , Tinoco E. N. , Mani M. , Brodersen O. P. , Eisfeld B. , Wahls R. A. , Morrison J. H. , Zickuhr T. , Levy D. and Murayama M. Grid Quality and Resolution Issues from the Drag Prediction Workshop Series Journal of Aircraft 46 3 935 950 2009 10.2514/1.39201
- Monastero M. C. Validation of 3-D Ice Accretion Measurement Methodology Using Pressure-Sensitive Paint Master thesis University of Illinois at Urbana-Champaign 2013
- Jacobs J. and Bragg M. Two- and Three-Dimensional Iced Airfoil Separation Bubble Measurements by Particle Image Velocimetry 45th AIAA Aerospace Sciences Meeting and Exhibit , AIAA paper 2007-88 2007 10.2514/6.2007-88
- Gurbacki H. and Bragg M. Unsteady Flowfield About an Iced Airfoil 42nd AIAA Aerospace Sciences Meeting and Exhibit , AIAA paper 2004-562 2004 10.2514/6.2004-562
- Larsson J. and Wang Q. The prospect of using LES and DES in engineering design, and the research required to get there Royal Society Philosophical Transactions A 372 2022 2014 10.1098/rsta.2013.0329
- Larsson J. and Kawai S. Wall-modeling in large eddy simulation: length scales, grid resolution and accuracy Annual Research Briefs Center for Turbulence Research 2010
- König B. , Fares E. and Noelting S. Lattice-Boltzmann Flow Simulations for the HiLiftPW-2 52nd Aerospace Sciences Meeting , AIAA paper 2014-0911 2014 10.2514/6.2014-0911
- König B. , Fares E. and Noelting S. Fully-Resolved Lattice-Boltzmann Simulation of Vane-Type Vortex Generators 7th AIAA Flow Control Conference , AIAA paper 2014-2795 2014 10.2514/6.2014-2795
- Vatsa V. N. , Casalino D. , Lin J. C. and Appelbaum J. Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators 32nd AIAA Applied Aerodynamics Conference , AIAA paper 2014-2142 2014 10.2514/6.2014-2142