This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation

Journal Article
2015-01-1888
ISSN: 1946-3936, e-ISSN: 1946-3944
Published September 01, 2015 by SAE International in United States
Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation
Sector:
Citation: Bertsch, M., Koch, T., Velji, A., and Kubach, H., "Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation," SAE Int. J. Engines 9(1):154-170, 2016, https://doi.org/10.4271/2015-01-1888.
Language: English

References

  1. Kufferath, A., et al. The EU6 Challenge at GDI - Assessment of Feasible System Solutions. International Vienna Motor Symposium. 2012.
  2. Karl, G., et al. Future Potential of Gasoline Engines. Ignition Systems for Gasoline Engines. 2014.
  3. Altenschmidt, F., et al. The Spray-Guided Mercedes-Benz Combustion System - Developed not only for Stratified Mode. SIA/Articles techniques. 2011, http://www.sia.fr/dyn/publications_detail.asp?codepublication=R-2011-08-34.
  4. Kiefer, A., et al. Development of a Spray-guided Lean-burn Combustion using a Multi-hole Injector for Turbocharged Engines (in German). 9th Conference on Diesel and Gasoline Direct Injection. 2014, ISBN 978-3-658-07649-8; doi:10.1007/978-3-658-07650-4, pp. 275-311.
  5. Steinparzer, F., et al. The New BMW 3- and 4-Cylinder Petrol Engines with TwinPower Turbo Technology. International Vienna Motor Symposium. 2014.
  6. Diess, H. BMW i3 and BMW i8. Contemporary Drivetrains for a New Sheer Driving Pleasure. [ed.] International Vienna Motor Symposium. International Vienna Motor Symposium. 2014.
  7. Zhang, H., et al. Challenges for Gasoline Direct Injection Systems to meet EU6c Limitations (in German). 9th Conference on Diesel and Gasoline Direct Injection. 2014, ISBN 978-3-658-07649-8; doi:10.1007/978-3-658-07650-4, pp. 239-274.
  8. Delphi Powertrain Systems. [Online] [Cited: 12 05, 2014.] http://www.delphi.com/manufacturers/auto/powertrain/emissions_standards/2014-2015_delphi_pc/.
  9. Piock, W., Hoffmann, G., Berndorfer, A., Salemi, P. et al., “Strategies Towards Meeting Future Particulate Matter Emission Requirements in Homogeneous Gasoline Direct Injection Engines,” SAE Int. J. Engines 4(1):1455-1468, 2011, doi:10.4271/2011-01-1212.
  10. Schumann, F., Kubach, H. and Spicher, U. The Influence of Injection Pressures up to 800 bar on Catalyst Heating Operation in Gasoline Direct Injection Engines. The Eighth International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA). 2012.
  11. Befrui, B, et al. Enhanced Spray and Combustion Performance of GDi Multi-Hole Injectors by Increased Fuel System Pressure. 11. International Symposium on Combustion Diagnostics. 2014.
  12. Thewes, M., Muther, M., Brassat, A., Pischinger, S. et al., “Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized Dl SI Engine,” SAE Int. J. Fuels Lubr. 5(1):274-288, 2012, doi:10.4271/2011-01-1991.
  13. Jin, C., et al. Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews. 2011, Vol. 15, doi:10.1016/j.rser.2011.06.001, pp. 4080-4106.
  14. Bockhorn, H., et al. Soot Formation in Combustion. Berlin, Heidelberg, New York : Springer-Verlag, 1994. ISBN 3-540-58398-X.
  15. Dageforde, H., Koch, T., Beck, K., and Spicher, U., “Influence of Fuel Composition on Exhaust Emissions of a DISI Engine during Catalyst Heating Operation,” SAE Int. J. Fuels Lubr. 6(3):627-640, 2013, doi:10.4271/2013-01-2571.
  16. Aikawa, K., Sakurai, T., and Jetter, J., “Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions,” SAE Int. J. Fuels Lubr. 3(2):610-622, 2010, doi:10.4271/2010-01-2115.
  17. Leach, F., Stone, R. and Richardson, D. The Influence of Fuel Properties on Particulate Number Emissions from a Direct Injection Spark Ignition Engine. SAE Technical Paper. 2013, 2013-01-1558; doi:10.4271/2013-01-1558.
  18. Berndorfer, A., et al. Diffusion Combustion Phenomena in GDi Engines caused by Injection Process. SAE Technical Paper. 2013, 2013-01-0261; doi:10.4271/2013-01-0261.
  19. Bertsch, M., et al. Influence of the Alcohol Type and Concentration in Alcohol-Blended Fuels on the Combustion and Emission of Small Two-Stroke SI Engines. SAE Technical Paper. 2012, 2012-32-0038; doi:10.4271/2012-32-0070.
  20. Busch, S. The Theory and Application of Optical Diagnostic Techniques in the Combustion Chamber of a Diesel Engine. Karlsruhe : Logos Verlag Berlin, 2013. ISBN 978-3-8325-3511-7.
  21. Velji, A., et al. Investigations of the formation and oxidation of soot inside a direct injection spark ignition engine using advanced Laser-Techniques. SAE Technical Paper. 2010, 2010-01-0352; doi:10.4271/2010-01-0352.
  22. Sabathil, D., et al. The Influence of DISI Engine Operating Parameters on Particle Number Emissions. SAE Technical Paper. 2011, 2011-01-0143; doi:10.4271/2011-01-0143.
  23. Cudeiro Torruella, M., et al. High-Speed Optical Diagnostics of Soot Formation in a Spray Guided DISI Engine under Lean Stratified Operation. 11th International Symposium on Combustion Diagnostics. 2014.
  24. Gaydon, A. G. The Spectroscopy of Flames. s.l. : Chapman and Hall, second edition, 1974.
  25. Storch, M., et al. Investigations of the influence of Ethanol blending on soot formation in GDI engines using High-Speed-Visualisation (in german). 9th Conference on Diesel and Gasoline Direct Injection. 2014, ISBN 978-3-658-07649-8; doi:10.1007/978-3-658-07650-4, pp. 443-458.
  26. MKS Instruments Inc. Specifications Multigas FTIR 2030. [Online] [Cited: 12 17, 2014.] http://www.mksinst.com/docs/UR/MultiGas2030-specifications.aspx.
  27. AVL. The AVL Particle Counter: APC 489 Experience from VPR and PNC validations. [Online] 12 06, 2011. [Cited: 12 17, 2014.] http://www.unece.org/fileadmin/DAM/trans/doc/2011/wp29grpe/PMP-26-04e.pdf.
  28. Giechaskiel, B., Dilaraa, P. and Andersson, J. Particle Measurement Programme (PMP) Light-Duty Inter-Laboratory Exercise: Repeatability and Reproducibility of the Particle Number Method, Aerosol Science and Technology. Aerosol Science and Technology. 42, 2008, Vol. 7, doi:10.1080/02786820802220241.
  29. TSI. Engine Exhaust Particle Sizer Spectrometer Model 3090. [Online] [Cited: 12 17, 2014.] http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Spec_Sheets/3090_2980244A.pdf.
  30. Hügel, P., Kubach, H. and Koch, T. Experimental Investigations of the Wall Heat Losses on a Single Cylinder Research Engine in Homogenous and Stratified Charge Operation (in german). 9th Conference on Diesel and Gasoline Direct Injection. 2014, ISBN 978-3-658-07649-8; doi:10.1007/978-3-658-07650-4, pp. 329-352.
  31. Hoffmann, G., Befrui, B., Berndorfer, A., Piock, W. et al., “Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems,” SAE Int. J. Engines 7(1):519-527, 2014, doi:10.4271/2014-01-1209.
  32. Kalghatgi, G.T. Fuel Anti-Knock Quality - Part I. Engine Studies. SAE Technical Paper. 2001, 2001-01-3584; doi:10.4271/2001-01-3584.
  33. -. Fuel Anti-Knock Quality- Part II. Vehicle Studies - How Relevant is Motor Octane Number (MON) in Modern Engines? SAE Technical Paper. 2001, 2001-09-24; doi:10.4271/2001-01-3585.
  34. Kalghatgi, G.T., Nakata, K. and Mogi, K. Octane Appetite Studies in Direct Injection Spark Ignition (DISI) Engines. SAE Technical Paper. 2005, 2005-01-0244; doi:10.4271/2005-01-0244.
  35. Amer, A., Babiker, H., Chang, J., Kalghatgi, G. et al., “Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine,” SAE Int. J. Fuels Lubr. 5(3):1048-1065, 2012, doi:10.4271/2012-01-1634.
  36. Mittal, V. and Heywood, J. B. The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines. SAE Technical Paper. 2008, 2008-01-2414; doi:10.4271/2008-01-2414.
  37. Mittal, V. and Heywood, J., “The Shift in Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines Over the Last 70 Years,” SAE Int. J. Engines 2(2):1-10, 2010, doi:10.4271/2009-01-2622.
  38. Disch, C., et al. Investigations of Spray-Induced Vortex Structures during Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV. SAE Technical Paper. 2013, 2013-01-0563; doi:10.4271/2013-01-0563.
  39. Hampe, C., et al. Investigation of Ignition Processes using High Frequency Ignition. SAE Technical Paper. 2013, 2013-01-1633; doi:10.4271/2013-01-1633.
  40. Beck, K.W., et al. Spectroscopic Measurements in Small Two-Stroke SI Engines. SAE Technical Paper. 2009, 2009-32-0030 / JSAE: 20097030.
  41. Salzer, R., Thiele, S. and Suemmchen, L. Functional principle of monochromator and spectrograph. [Online] [Cited: 11 05, 2014.] http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/3/anc/ir_spek/raman_geraete.vlu/Page/vsc/de/ch/3/anc/ir_spek/raman_spektroskopie/raman_geraetetechnik/ra_1_3/monochromram_m89ht0803.vscml.html.
  42. LOT-Oriel Group Europe. [Online] [Cited: 12 12, 2014.] http://www.lot-qd.de/files/downloads/lightsources/en/LQ_Pen-Ray_Line_sources_for_wavelength_calibration_en.pdf.
  43. LEONI. Calculation of the transmission behavior of the UV-VIS optical fibre, length 5m. [Online] [Cited: 12 15, 2014.] http://www.leoni-fiber-optics.com/Transmission-Tool.11883.0.html.
  44. LaVision. Technical documentation of HighSpeedStar 6. Göttingen, Germany : La Vision GmbH, 2007.
  45. Princeton Instruments. Curve of the HQf intensifier of the spectrograph. [Online] [Cited: 12 15, 2014.] http://www.princetoninstruments.com/Uploads/Princeton/Documents/Datasheets/Princeton_Instruments_PI-MAX3_1024x256_Rev_N3_9.30.2011.pdf.
  46. Wang, C., et al. Impact of fuel and injection system on particle emissions from a GDI engine. Applied Energy. 132, November 2014, doi:10.1016/j.apenergy.2014.06.012, pp. 178-191.
  47. Kittelson, D. B. Engines and nanoparticles: a review. Journal of Aerosol Sience. 1998, Vol. 29, doi:10.1016/S0021-8502(97)10037-4, pp. 5-6.
  48. Heywood, J. B. Internal Combustion Engines Fundamentals. s.l. : McGraw-Hall, 1988.
  49. Grzeszik, R. Optical measurement technique to evaluate in-engine fuel wall films (in german). 9th Conference on Diesel and Gasoline Direct Injection. 2014, ISBN 978-3-658-07649-8; doi:10.1007/978-3-658-07650-4, pp. 373-388.
  50. Frenklach, M., et al. Effect of Fuel Structure on Pathways to Soot. [ed.] The Combustion Institute. 21st Symposium (International) on Combustion. 21, 1986, Vol. 1, doi:10.1016/S0082-0784(88)80337-0, pp. 1067-1076.
  51. Frenklach, M. and Wang, H. Detailed modeling of soot particle nucleation and growth. [ed.] The Combustion Institute. 23 Symposium (International) on Combustion. 23, 1991, Vol. 1, doi:10.1016/S0082-0784(06)80426-1, pp. 1559-1566.
  52. McKinnon, J. T. and Howard, J. B. The roles of pah and acetylene in soot nucleation and growth. [ed.] The Combustion Institute. 24th Symposium (International) on Combustion. 24, 1992, Vol. 1, doi:10.1016/S0082-0784(06)80114-1, pp. 965-972.
  53. Khalek, I., Bougher, T., and Jetter, J., “Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels,” SAE Int. J. Fuels Lubr. 3(2):623-637, 2010, doi:10.4271/2010-01-2117.
  54. Birkigt, A. Method for preventing a premature ignition in an internal combustion engine. WO2013185966 A1 Germany, 2013. Registration. http://www.google.com/patents/WO2013185966A1?cl=en.

Cited By