This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

Journal Article
2015-01-0397
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 14, 2015 by SAE International in United States
Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods
Sector:
Citation: Catapano, F., Costa, M., Marseglia, G., Sementa, P. et al., "Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods," SAE Int. J. Engines 8(2):437-446, 2015, https://doi.org/10.4271/2015-01-0397.
Language: English

References

  1. Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., Song, M., 2012. The engine knock analysis - An overview, Applied Energy, Vol. 92, April 2012, pp. 628-636.
  2. Alkidas, A. C. Combustion Advancements in Gasoline Engines, Energy Conversion and Management, 48, 2751-2761., 2007
  3. Corcione, F., Costa, M., Vaglieco, B., and De Maio, A., “The Role of Radical Species in Diesel Engine Auto-Ignition Detection,” SAE Technical Paper 2001-01-1003, 2001, doi:10.4271/2001-01-1003.
  4. Draper, C. S., Pressure Waves Accompanying Detonation in Internal Combustion Engine. J. Aeronautical Sci., Vol. 5, 1938.
  5. Leppard, W., “The Autoignition Chemistries of Octane- Enhancing Ethers and Cyclic Ethers: A Motored Engine Study,” SAE Technical Paper 912313, 1991, doi:10.4271/912313.
  6. Li, H., Prabhu, S., Miller, D., and Cernansky, N., “Autoignition Chemistry Studies on Primary Reference Fuels in a Motored Engine,” SAE Technical Paper 942062, 1994, doi:10.4271/942062.
  7. Bai, Y. I., Wang J. X., Whang Z., Shuai S. J. Knocking Suppression by Stratified Stoichiometric Mixture With Two-Zone Homogeneity in a DISI Engine, Journal of Engineering for Gas Turbines and Power, Vol. 135(1), 2013.
  8. Baek, H., Lee, S., Han, D., Kim, J. et al., “Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy,” SAE Technical Paper 2014-01-1639, 2014, doi:10.4271/2014-01-1639.
  9. Kumano, K. and Yamaoka, S., “Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine,” SAE Technical Paper 2014-01-1217, 2014, doi:10.4271/2014-01-1217.
  10. Fontanesi, S., Cicalese, G., Cantore, G., and D'Adamo, A., “Integrated In-Cylinder/CHT Analysis for the Prediction of Abnormal Combustion Occurrence in Gasoline Engines,” SAE Technical Paper 2014-01-1151, 2014, doi:10.4271/2014-01-1151.
  11. Colin, O., Benkenida, A., Angelberger, C. 3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines, Oil & Gas Science and Technology - Rev. IFP Energies Nouvelles, 58, 47-62, 2003.
  12. Halstead, M.P., Kirsch, L.J., Quinn, C.P. The auto-ignition of hydrocarbon fuel at high temperatures and pressures - fitting of a mathematical model, Combustion and Flame, Vol. 30, 45-60, 1977.
  13. Sazhina, E.M., Sazhin, S.S., Heikal, M.R., Marooney, C.J. The Shell Autoignition Model: Applications to Gasoline and Diesel Fuels, Fuel, 78, 389-401, 1999.
  14. Costa M., Vaglieco B. M., Corcione F.E. Radical species participating the cool-flame regime of diesel combustion: a comparative numerical and experimental study, Experiments in Fluids, Vol. 39, 512-524, 2005.
  15. ED Equation .3 ¶ ┴ughes, K.J., Schreiber, M., Poppe, C., Dryer, F.L. A unified approach to the reduced kinetic modeling of alkane combustion, Combustion and Flame, Vol. 99 (3-4), 533-540, 1994.
  16. Sahetchian, K., Champoussin, J.C., Brun, M., Levy, N., Blin- Simiand, N., Aligrot, C., Jorand, F., Guerassi, N. Experimental study and modeling of dodecane ignition in a diesel engine, Combustion and Flame, Vol. 103 (3), 207-220, 1995.
  17. Costa, M., Sorge, U., Sementa, P., Vaglieco, B. M. Modeling and performance optimization of a direct injection spark ignition engine for the avoidance of knocking, 4th International Conference on Simulation and Modeling, Methodologies, Technologies and Applications - Simultech 2014, Wien (Austria), to be published on Advances in Intelligent Systems and Computing, Springer, 2014.
  18. Catapano, F., Sementa, P., and Vaglieco, B., “Design for an Optically Accessible Multicylinder High Performance GDI Engine,” SAE Technical Paper 2011-24-0046, 2011, doi:10.4271/2011-24-0046.
  19. Okada, Y., Miyashita, S., Izumi, Y., and Hayakawa, Y., “Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine,” SAE Int. J. Engines 7(2):584-594, 2014, doi:10.4271/2014-01-1218.
  20. Willand J., Daniel M., Montefrancesco E., et al. Limits on downsizing in spark ignition engines due to pre-ignition. MTZ worldwide, 2009, 70(5):56-61.
  21. Qi, Y., Xu, Y., Wang, Z., and Wang, J., “The Effect of Oil Intrusion on Super Knock in Gasoline Engine,” SAE Technical Paper 2014-01-1224, 2014, doi:10.4271/2014-01-1224.
  22. Dahnz, C., Spicher, U. Irregular combustion in supercharged spark ignition engines - pre-ignition and other phenomena. International Journal of Engine Research, 11(6):485-498, 2010.
  23. Heywood, J.B. Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1988.
  24. Rothe, M., Heidenreich, T., Spicher, U., and Schubert, A., “Knock Behavior of SI-Engines: Thermodynamic Analysis of Knock Onset Locations and Knock Intensities,” SAE Technical Paper 2006-01-0225, 2006, doi:10.4271/2006-01-0225.
  25. Sementa, P., Vaglieco, B.M., Catapano, F. Thermodynamic and Optical Characterizations of a High Performance GDI Engine Operating in Homogeneous and Stratified Charge Mixture Conditions Fuelled With Gasoline And Bio-Ethanol, Fuel 96, 204-219, 2012.
  26. Kawahara, N., Tomita, E., Sakata, Y. Auto-ignited kernels during knocking combustion in a spark-ignition engine, Proceedings of the Combustion Institute, Volume 31, Issue 2, January 2007, Pages 2999-3006.
  27. https://www.avl.com/web/ast/fire
  28. Huh, K., Y., Gosman, A. D. A phenomenological model of diesel spray atomisation, International Conference on Multiphase Flows, Tsukuba, Japan, 1991.
  29. O' Rourke, P. J., Bracco, F. V., Modeling of drop interactions in thick sprays and a comparison with experiments, IMECHE, London, 1980.
  30. Nordin, N. Complex chemical modeling of diesel spray combustion, Thesis (PhD), Chalmers University of Technology, 2001.
  31. Brenn, G., Deviprasath, L. J., Durst, F. Computations and experiments on the evaporation of multi-component droplets, Proceedings 9th International Conference Liquid Atomization Spray Systems (ICLASS), Sorrento, 2003.
  32. Kuhnke, D., Spray Wall Interaction Modeling by Dimensionless Data Analysis, PhD Thesis, Technische Universität Darmstadt, 2004.
  33. Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in energy and combustion science, Vol. 10(3), pp. 319-339, 1984.
  34. Zeldovich, Y. B., Sadovnikov, P. Y., Frank-Kamenetskii, D. A., Oxidation of Nitrogen in Combustion, Translation by Shelef M., Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-Leningrad, 1947.

Cited By