Boosting Simulation of High Efficiency Alternative Combustion Mode Engines

Event
SAE 2011 World Congress & Exhibition
Authors Abstract
Content
Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE.
For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.
Meta TagsDetails
DOI
https://doi.org/10.4271/2011-01-0358
Pages
24
Citation
Chadwell, C., Alger, T., Roberts, C., and Arnold, S., "Boosting Simulation of High Efficiency Alternative Combustion Mode Engines," SAE Int. J. Engines 4(1):375-393, 2011, https://doi.org/10.4271/2011-01-0358.
Additional Details
Publisher
Published
Apr 12, 2011
Product Code
2011-01-0358
Content Type
Journal Article
Language
English