This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulating the Optical Properties of Soot Using a Stochastic Soot Model

Journal Article
03-16-01-0006
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 05, 2022 by SAE International in United States
Simulating the Optical Properties of Soot Using a Stochastic Soot
                    Model
Sector:
Citation: Strickland, T., Kokjohn, S., and Li, Q., "Simulating the Optical Properties of Soot Using a Stochastic Soot Model," SAE Int. J. Engines 16(1):99-112, 2023, https://doi.org/10.4271/03-16-01-0006.
Language: English

References

  1. Ferin , J. , Oberdörster , G. , Soderholm , S.C. , and Gelein , R. Pulmonary Tissue Access of Ultrafine Particles J. Aerosol Med. 4 1991 57 68
  2. Parliament , E. 2007
  3. Gleason , K. , Carbone , F. , Sumner , A.J. , Drollette , B.D. et al. Small Aromatic Hydrocarbons Control the Onset of Soot Nucleation Combust. Flame 223 2021 398 406
  4. Abid , A.D. , Camacho , J. , Sheen , D.A. , and Wang , H. Quantitative Measurement of Soot Particle Size Distribution in Premixed Flames—The Burner-Stabilized Stagnation Flame Approach Combust. Flame 156 2009 1862 1870
  5. Skeen , S.A. , Manin , J. , Dalen , K. , and Pickett , L.M. Extinction-Based Imaging of Soot Processes over a Range of Diesel Operating Conditions 8th US National Combustion Meeting Salt Lake City, UT University of Utah 2013
  6. Kook , S. and Pickett , L.M. Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions SAE Int. J. Fuels Lubr. 5 2 2012 647 664 https://doi.org/10.4271/2012-01-0678
  7. Yon , J. , Cruz , J.J. , Escudero , F. , Morán , J. et al. Revealing Soot Maturity Based on Multi-Wavelength Absorption/Emission Measurements in Laminar Axisymmetric Coflow Ethylene Diffusion Flames Combust. Flame 227 2021 147 161
  8. Bescond , A. , Yon , J. , Ouf , F.-X. , Rozé , C. et al. Soot Optical Properties Determined by Analyzing Extinction Spectra in the Visible Near-UV: Toward an Optical Speciation According to Constituents and Structure J. Aerosol Sci. 101 2016 118 132
  9. Liu , P. , Ahmad , H. , Jiang , X. , Chen , H. et al. Evolution of Structure and Oxidation Reactivity from Early-Stage Soot to Mature Soot Sampled from a Laminar Coflow Diffusion Flame of Ethylene Combust. Flame 228 2021 202 209
  10. Commodo , M. , Karataş , A.E. , De Falco , G. , Minutolo , P. et al. On the Effect of Pressure on Soot Nanostructure: A Raman Spectroscopy Investigation Combust. Flame 219 2020 13 19
  11. Office of Nuclear Energy 2013 2018 https://www.energy.gov/ne/articles/role-modeling-and-simulation-scientific-discovery
  12. Dobbins , R.A. and Megaridis , C.M. Absorption and Scattering of Light by Polydisperse Aggregates Appl. Optics 30 1991 4747 4754
  13. Farias , T.L. , Köylü , U.O. , and Carvalho , M.G. Range of Validity of the Rayleigh-Debye-Gans Theory for Optics of Fractal Aggregates Appl. Opt. 35 33 1996 6560 6567
  14. Manin , J. , Pickett , L.M. , and Skeen , S.A. Two-Color Diffused Back-Illumination Imaging as a Diagnostic for Time-Resolved Soot Measurements in Reacting Sprays SAE Int. J. Engines 6 4 2013 1908 1921 https://doi.org/10.4271/2013-01-2548
  15. Williams , J.M. and L. A. Gritzo, In Situ Sampling and Transmission Electron Microscope Analysis of Soot in the Flame Zone of Large Pool Fires Symp. (Int.) Combust. 27 1998 2707 2714
  16. Chang , H.-C. and Charalampopoulos , T.T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 430 1990 577 591
  17. Zhang , Q. and Rubini , P. Modelling of Light Extinction by Soot Particles Fire Saf. J. 46 2011 96 103
  18. Pickett , L.M. and Abraham , J.P. Computed and Measured Fuel Vapor Distribution in a Diesel Spray At. Sprays 20 2010 241 250
  19. Ra , Y. and Reitz , R. The Application of a Multicomponent Droplet Vaporization Model to Gasoline Direct Injection Engines Int. J Engine Res. 4 2003 193 218
  20. Abani , N. and Reitz , R.D. A Model to Predict Spray-Tip Penetration for Time-Varying Injection Profiles ILASS Americas, 20th Annual Conference on Liquid Atomization and Spray Systems Chicago, IL 2007
  21. Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model At. Sprays 9 1999 623 650
  22. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ - ε Models Combust. Sci. Technol. 106 1995 267 295
  23. Perini , F. , Galligani , E. , and Reitz , R.D. An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling with Large Reaction Mechanisms Energ. Fuel. 26 2012 4804 4822
  24. Ren , S. , Kokjohn , S.L. , Wang , Z. , Liu , H. et al. A Multicomponent Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction Fuel 208 2017 447 468
  25. Kholghy , M.R. and Kelesidis , G.A. Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model Combust. Flame 227 2021 456 463
  26. Goodson , M. and Kraft , M. An Efficient Stochastic Algorithm for Simulating Nano-Particle Dynamics J. Comput. Phys. 183 2002 210 232
  27. Mosbach , S. , Celnik , M.S. , Raj , A. , Kraft , M. et al. Towards a Detailed Soot Model for Internal Combustion Engines Combust. Flame 156 2009 1156 1165
  28. Katta , V.R. , Blevins , L.G. , and Roquemore , W.M. Dynamics of an Inverse Diffusion Flame and Its Role in Polycyclic-Aromatic-Hydrocarbon and Soot Formation Combust. Flame 142 2005 33 51
  29. Zuber , M.A. , Wan Mahmood , W.M.F. , Harun , Z. , Zainol Abidin , Z. et al. Modeling of In-Cylinder Soot Particle Size Evolution and Distribution in a Direct Injection Diesel Engine SAE Technical Paper 2015-01-1075 2015 https://doi.org/10.4271/2015-01-1075
  30. Wan Mahmood , W.M.F. , LaRocca , A. , Shayler , P.J. , Bonatesta , F. et al. Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine SAE Technical Paper 2012-01-0148 2012 https://doi.org/10.4271/2012-01-0148
  31. Patankar , N. and Joseph , D. Modeling and Numerical Simulation of Particulate Flows by the Eulerian Lagrangian Approach Int. J. Multiph. Flow 27 2001 1659 1684
  32. Balthasar , M. and Kraft , M. A Stochastic Approach to Calculate the Particle Size Distribution Function of Soot Particles in Laminar Premixed Flames Combust. Flame 133 2003 289 298
  33. Celnik , M. , Patterson , R. , Kraft , M. , and Wagner , W. Coupling a Stochastic Soot Population Balance to Gas-Phase Chemistry Using Operator Splitting Combust. Flame 148 2007 158 176
  34. Patterson , R.I. , Singh , J. , Balthasar , M. , Kraft , M. et al. Extending Stochastic Soot Simulation to Higher Pressures Combust. Flame 145 2006 638 642
  35. Dastanpour , R. and Rogak , S.N. Observations of a Correlation between Primary Particle and Aggregate Size for Soot Particles Aerosol Science and Technology 48 10 2014 1043 1049
  36. Rogak , S.N. and Flagan , R.C. Stokes Drag on Self-Similar Clusters of Spheres Journal of Colloid and Interface Science 134 1990 206 218
  37. Park , K. , Cao , F. , Kittelson , D.B. , and McMurry , P.H. Relationship between Particle Mass and Mobility for Diesel Exhaust Particles Environmental Science & Technology 37 2003 577 583
  38. Neer , A. and Koylu , U.O. Effect of Operating Conditions on the Size, Morphology, and Concentration of Submicrometer Particulates Emitted from a Diesel Engine Combustion and Flame 146 1 2006 142 154
  39. Lall , A.A. and Friedlander , S.K. On-Line Measurement of Ultrafine Aggregate Surface Area and Volume Distributions by Electrical Mobility Analysis: I. Theoretical Analysis Journal of Aerosol Science 37 3 2006 260 271
  40. Lall , A.A. , Rong , W. , Mädler , L. , and Friedlander , S.K. Nanoparticle Aggregate Volume Determination by Electrical Mobility Analysis: Test of Idealized Aggregate Theory Using Aerosol Particle Mass Analyzer Measurements Journal of Aerosol Science 39 2008 403 417
  41. Appel , J. , Bockhorn , H. , and Frenklach , M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons Combust. Flame 121 2000 122 136
  42. Gosman , A. and Clerides , D. Diesel Spray Modelling: A Review Proceedings of ILASS-Europe Florence, Italy 1997
  43. Liang , L. , Reitz , R.D. , Iyer , C.O. , and Yi , J. Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics SAE Technical Paper 2007-01-0165 2007 https://doi.org/10.4271/2007-01-0165
  44. Chuahy , F.D.F. and Kokjohn , S.L. Effects of the Direct-Injected Fuel’s Physical and Chemical Properties on Dual-Fuel Combustion Fuel 207 2017 729 740
  45. Strickland , T. and Kokjohn , S. Simulation of a Diesel Fuel Jet with a 3D Stochastic Soot Model 2018 Spring Technical Meeting 2018
  46. Bockhorn , H. Soot Formation in Combustion: Mechanisms and Models, Springer Series in Chemical Physics Berlin, Heidelberg Springer 1994
  47. Siebers , D.L. and Higgins , B.S. Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays Whitelaw , J.H. , Payri , F. , and Desantes , J.M. Thermo- and Fluid-Dynamic Processes in Diesel Engines Berlin Springer 2000 253 277
  48. Som , S. , Longman , D.E. , Luo , Z. , Plomer , M. et al. Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model J. Energ. Resour.-ASME 134 2012 032204

Cited By