This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine

Journal Article
03-15-01-0001
ISSN: 1946-3936, e-ISSN: 1946-3944
Published June 10, 2021 by SAE International in United States
Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine
Sector:
Citation: Hua, W., Nguyen, V., and Le, V., "Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine," SAE Int. J. Engines 15(1):3-13, 2022, https://doi.org/10.4271/03-15-01-0001.
Language: English

References

  1. Kovalchenko , A. , Ajayi , O. , Erdemir , A. et al. The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes during Unidirectional Sliding Contact Tribol Int 38 2005 219 225 https://doi.org/10.1016/j.triboint.2004.08.004
  2. Gropper , D. , Wang , L. , and Harvey , J. Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings Tribol Int 194 2016 509 529 https://doi.org/10.1016/j.triboint.2015.10.009
  3. Zhang , H. and Hua , M. A Mixed Lubrication Model for Studying Tribological Behaviors of Surface Texturing Tribol Int 93 2016 583 592 https://doi.org/10.1016/j.triboint.2015.03.027
  4. Rosenkranz , A. , Costa , H. , Profito , F. et al. Influence of Surface Texturing on Hydrodynamic Friction in Plane Converging Bearings—An Experimental and Numerical Approach Tribol Int 134 2019 190 204 https://doi.org/10.1016/j.triboint.2019.01.042
  5. Zhang , J. , Zhang , J. , Rosenkranz , A. et al. Surface Textures Fabricated by Laser Surface Texturing and Diamond Cutting-Influence of Texture Depth on Friction and Wear Adv Eng Mater 20 2018 1700995 https://doi.org/10.1002/adem.201700995
  6. Grützmacher , P. , Profito , P. , and Rosenkranz , A. Multi-Scale Surface Texturing in Tribology-Current Knowledge and Future Perspectives Lubricants 7 95 2019 https://doi.org/10.3390/lubricants7110095
  7. Nguyen , V. , Zhang , J. et al. Research on the Effect of Crankpin Bearing Speed and Dimension on Improving Engine Power J South Univ 37 2021 1 7 https://doi.org/10.3969/j.issn.1003-7985.2021.02.028
  8. Zhang , J. , Yang , D. , Rosenkranz , A. Laser Surface Texturing of Stainless Steel-Effect of Pulse Duration on Texture’s Morphology and Frictional Response Adv Eng Mater 21 1801016 2018 https://doi.org/10.1002/adem.201801016
  9. Etsion , I. Modeling of Surface Texturing in Hydrodynamic Lubrication Friction 1 2013 195 209 https://doi.org/10.1007/s40544-013-0018-y
  10. Zhang , H. , Hua , M. et al. Optimization of Texture Shape Based on Genetic Algorithm under Unidirectional Sliding Tribol Int 115 2017 222 232 https://doi.org/10.1016/j.triboint.2017.05.017
  11. Zhu , W. et al. Multi-UAV Reconnaissance Task Allocation for Heterogeneous Targets Using an Opposition-Based Genetic Algorithm with Double-Chromosome Encoding Chinese J Aero 31 2018 339 350 https://doi.org/10.1016/j.cja.2017.09.005
  12. Wu , Z. , Nguyen , V. , Le , V. et al. Design and Optimization of Textures on the Surface of Crankpin Bearing to Improve Lubrication Efficiency and Friction Power Loss (LE-FPL) of Engine P I Mech Eng J-J Eng 2020 2020 1 11 https://doi.org/10.1177/13506501209 42009
  13. Di Blasio , G. , Beatrice , C. , Ianniello , R. , Pesce , F. et al. Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines SAE Int. J. Adv. & Curr. Prac. in Mobility 2 2 2020 638 652 https://doi.org/10.4271/2019-24-0111
  14. Vassallo , A. , Beatrice , C. , Di Blasio , G. , Belgiorno , G. et al. The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine SAE Technical Paper 2018-37-0005 2018 https://doi.org/10.4271/2018-37-0005
  15. Belgiorno , G. , Boscolo , A. , Dileo , G. , Numidi , F. et al. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency SAE Int. J. Adv. & Curr. Prac. in Mobility 3 1 2021 672 684 https://doi.org/10.4271/2020-37-0003
  16. Beatrice , C. , Di Blasio , G. , and Belgiorno , G. Experimental Analysis of Functional Requirements to Exceed the 100 kW/l in High-Speed Light-Duty Diesel Engines Fuel 207 2017 591 601 https://doi.org/10.1016/j.fuel.2017.06.112
  17. Mourelatos , Z. An Efficient Journal Bearing Lubrication Analysis for Engine Crankshafts Tribol T 44 2001 https://doi.org/10.1080/10402000108982467
  18. Gregory , B. and Katia , L. Analysis of the Dynamics of a Slider-Crank Mechanism with Hydrodynamic Lubrication in the Connecting Rod-Slider Joint Clearance Mech Mach Theory 46 2011 1434 1452 https://doi.org/10.1016/j.mechmach-theory.2011.05.007
  19. Lia , Y. , Chen , G. , Sun , D. Dynamic Analysis and Optimization Design of a Planar Slider-Crank Mechanism with Flexible Components and Two Clearance Joints Mech Mach Theory 99 37 57 2016 https://doi.org/10.1016/j.mechmachtheory.2015.11.018
  20. Nguyen , V. , Wu , Z. et al. Optimization of Crankpin Bearing Lubrication Under Dynamic Loading Considering Effect of Micro Asperity Contact Ind Lub Tribol 72 2020 1173 1179 https://doi.org/10.1108/ILT-02-2020-0072
  21. Jiao , R. , Nguyen , V. et al. Optimal Design of Micro-Dimples on Crankpin Bearing Surface for Ameliorating Engine’s Lubrication and Friction Ind Lub Tribol 73 2020 52 59 https://doi.org/10.1108/ILT-04-2020-0152
  22. Zhao , B. , Dai , X. , Zhang , Z. et al. A New Numerical Method for Piston Dynamics and Lubrication Analysis Tribol Int 94 2016 395 408 https://doi.org/10.2016/j.triboint.2015.09.037
  23. Wang , X. , Zhang , J. , and Dong , H. Analysis of Bearing Lubrication Under Dynamic Loading Considering Micropolar and Cavitating Effects Tribol Int 44 2011 1071 1075 https://doi.org/10.1016/j.triboint.2011.05.002
  24. Zhang , H. , Hua , M. , Dong , G. et al. Boundary Slip Surface Design for High Speed Water Lubricated Tribol Int 79 2014 32 14 https://doi.org/10.2016/j.triboint.2014.05.022
  25. Patir , N. and Cheng , H. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication J Lub Tech 100 1978 12 17 https://doi.org/10.1115/1.3453103
  26. Greenwood , J. and Tripp , J. The Contact of Nominally Flat Rough Surface Proc Inst Mech Eng 185 1970 625 633 https://doi.org/10.1243/PIME_PROC_1970_185_069_02
  27. Patir , N. and Cheng , H. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces J Tribol 101 1979 220 229 https://doi.org/10.1115/1.3453329
  28. Zhao , B. , Zhang , Z. , Fang , C. , Dai , X. et al. Modeling and Analysis of Planar Multibody System with Mixed Lubricated Revolute Joint Tribol Int 98 2016 229 241 https://doi.org/10.2016/j.triboint.2016.02.024
  29. Braun , M. and Hannon , W. Cavitation Formation and Modelling for Fluid Film Bearings: A Review P I Mech Eng J-J Eng 224 2010 839 863 https://doi.org/10.1243/13506501 JET772 22
  30. Hamrock , B. , Schmid , S. , and Jacobson , B. Fundamentals of Fluid Film Lubrication Baton Rouge CRC Press 2004 https://doi.org/10.1201/9780203021187

Cited By