This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessments of Pressure-Based Ignition Delay Measurements of Various Cetane Number Fuels in a Small-Bore Compression Ignition Engine

Journal Article
03-14-05-0041
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 09, 2021 by SAE International in United States
Assessments of Pressure-Based Ignition Delay Measurements of Various Cetane Number Fuels in a Small-Bore Compression Ignition Engine
Citation: Zhang, Y., Kook, S., Kim, K., and Kweon, C., "Assessments of Pressure-Based Ignition Delay Measurements of Various Cetane Number Fuels in a Small-Bore Compression Ignition Engine," SAE Int. J. Engines 14(5):683-695, 2021, https://doi.org/10.4271/03-14-05-0041.
Language: English

References

  1. Kanda , T. , Hakozaki , T. , Uchimoto , T. , Hatano , J. et al. PCCI Operation with Early Injection of Conventional Diesel Fuel SAE Technical Paper 2005-01-0378 2005 https://doi.org/10.4271/2005-01-0378
  2. Hardy , W.L. and Reitz , R.D. A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion SAE Technical Paper 2006-01-0026 2006 https://doi.org/10.4271/2006-01-0026
  3. Opat , R. , Ra , Y. , Gonzalez , D. , Krieger , R. et al. Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine SAE Technical Paper 2007-01-0193 2007 https://doi.org/10.4271/2007-01-0193
  4. Sjöberg , M. and Dec , J.E. An Investigation into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines Proc Combust Inst 30 2 2719 2726 2005 https://doi.org/10.1016/j.proci.2004.08.132
  5. Dec , J.E. Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes Proc Combust Inst 32 2 2727 2742 2009 https://doi.org/10.1016/j.proci.2008.08.008
  6. Agarwal , A.K. , Singh , A.P. , and Maurya , R.K. Evolution, Challenges and Path forward for Low Temperature Combustion Engines Prog Energy Combust Sci 61 1 56 2017 https://doi.org/10.1016/j.pecs.2017.02.001
  7. Manente , V. , Tunestal , P. , Johansson , B. , and Cannella , W.J. Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion from Low to High Load SAE Technical Paper 2010-01-0871 2010 https://doi.org/10.4271/2010-01-0871
  8. Sellnau , M.C. , Sinnamon , J. , Hoyer , K. , and Husted , H. Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM SAE Int. J. Engines 5 2 300 314 2012 https://doi.org/10.4271/2012-01-0384
  9. Verma , G. , Sharma , H. , Thipse , S.S. , and Agarwal , A.K. Spark Assisted Premixed Charge Compression Ignition Engine Prototype Development Fuel Process Technol 152 413 420 2016 https://doi.org/10.1016/j.fuproc.2016.07.006
  10. Allen , C. , Valco , D. , Toulson , E. , Edwards , T. et al. Ignition Behavior and Surrogate Modeling of JP-8 and of Camelina and Tallow Hydrotreated Renewable Jet Fuels at Low Temperatures Combust Flame 160 232 239 2013 https://doi.org/10.1016/j.combustflame.2012.10.008
  11. Min , K. , Valco , D.J. , Oldani , A. , Kim , K. et al. Autoignition of Varied Cetane Number Fuels at Low Temperatures Proc Combust Inst 37 5003 5011 2019 https://doi.org/10.1016/j.proci.2018.05.078
  12. Burke , U. , Somers , K.P. , O’Toole , P. , Zinner , C.M. et al. An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures Combust Flame 162 315 330 2015 https://doi.org/10.1016/j.combustflame.2014.08.014
  13. Rotavera , B. and Petersen , E.L. Blending Effects on Ignition Delay Times of Methyl Octanoate/n-Nonane/Methylcyclohexane Fuel 115 264 281 2014 https://doi.org/10.1016/j.fuel.2013.06.053
  14. Lee , C. , Ahmed , A. , Nasir , E.F. , Badra , J. et al. Autoignition Characteristics of Oxygenated Gasolines Combust Flame 186 114 128 2017 https://doi.org/10.1016/j.combustflame.2017.07.034
  15. Wang , S. , Yu , L. , Wu , Z. , Mao , Y. et al. Gas-Phase Autoignition of Diesel/Gasoline Blends over Wide Temperature and Pressure in Heated Shock Tube and Rapid Compression Machine Combust Flame 201 264 275 2019 https://doi.org/10.1016/j.combustflame.2019.01.001
  16. Kukkadapu , G. , Kumar , K. , Sung , C.J. , Mehl , M. et al. Autoignition of Gasoline Surrogates at Low Temperature Combustion Conditions Combust Flame 162 2272 2285 2015 https://doi.org/10.1016/j.combustflame.2015.01.025
  17. Wang , S. , Feng , Y. , Qian , Y. , Mao , Y. et al. Experimental and Kinetic Study of Diesel/Gasoline Surrogate Blends over Wide Temperature and Pressure Combust Flame 213 369 381 2020 https://doi.org/10.1016/j.combustflame.2019.12.005
  18. Burke , U. , Pitz , W.J. , and Curran , H.J. Experimental and Kinetic Modeling Study of the Shock Tube Ignition of a Large Oxygenated Fuel: Tri-Propylene Glycol Mono-Methyl Ether Combust Flame 162 2916 2927 2015 https://doi.org/10.1016/j.combustflame.2015.03.012
  19. Fikri , M. , Cancino , L.R. , Hartmann , M. , and Schulz , C. High-Pressure Shock-Tube Investigation of the Impact of 3-Pentanone on the Ignition Properties of Primary Reference Fuels Proc Combust Inst 34 393 400 2013 https://doi.org/10.1016/j.proci.2012.05.101
  20. Shu , B. , Vallabhuni , S.K. , He , X. , Issayev , G. et al. A Shock Tube and Modeling Study on the Autoignition Properties of Ammonia at Intermediate Temperatures Proc Combust Inst 37 205 211 2019 https://doi.org/10.1016/j.proci.2018.07.074
  21. Goyal , H. , Zhang , Y. , Kook , S. , Kim , K.S. et al. Low- to High-Temperature Reaction Transition in a Small-Bore Optical Gasoline Compression Ignition (GCI) Engine SAE Int. J. Engines 12 5 3 12 2019 https://doi.org/10.4271/03-12-05-0031
  22. Woo , C. , Kook , S. , Rogers , P. , Marquis , C. et al. Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils SAE Int. J. Fuels Lubr. 8 3 597 609 2015 https://doi.org/10.4271/2015-24-2489
  23. Liu , X. , Goyal , H. , Kook , S. , and Ikeda , Y. Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine SAE Technical Paper 2019-01-1148 2019 https://doi.org/10.4271/2019-01-1148
  24. Zhang , Y. , Meng , S. , Kook , S. , Kim , K.S. et al. Liquid Spray Penetration Measurements Using High-Speed Backlight Illumination Imaging in a Small-Bore Compression Ignition Engine At Sprays 30 5 371 387 2020 https://doi.org/10.1615/AtomizSpr.2020034855
  25. Groendyk , M. and Rothamer , D. Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine SAE Int. J. Fuels Lubr. 8 1 200 213 2015 https://doi.org/10.4271/2015-01-0952
  26. Rothamer , D.A. and Murphy , L. Systematic Study of Ignition Delay for Jet Fuels and Diesel Fuel in a Heavy-Duty Diesel Engine Proc Combust Inst 34 3021 3029 2013 https://doi.org/10.1016/j.proci.2012.06.085
  27. Dieke , G.H. and Crosswhite , H.M. The Ultraviolet Bands of OH Fundamental Data J Quant Spectrosc Radiat Transf 2 97 199 1962 https://doi.org/10.1016/0022-4073(62)90061-4
  28. Dec , J. and Espey , C. Chemiluminescence Imaging of Autoignition in a DI Diesel Engine SAE Technical Paper 982685 1998 https://doi.org/10.4271/982685
  29. Naser , N. , Yang , S.Y. , Kalghatgi , G. , and Chung , S.H. Relating the Octane Numbers of Fuels to Ignition Delay Times Measured in an Ignition Quality Tester (IQT) Fuel 187 117 127 2017 https://doi.org/10.1016/j.fuel.2016.09.013
  30. Alkhayat , S.A. , Joshi , G.D. , and Henein , N. Analysis and Correlation of Ignition Delay for Hydrotreated Vegetable Oil and Ultra Low Sulfur Diesel and Their Blends in Ignition Quality Tester Fuel 289 119816 2021 https://doi.org/10.1016/j.fuel.2020.119816

Cited By