This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermodynamic Energy and Exergy Analysis of Low-Temperature Combustion Strategies

Journal Article
03-14-03-0021
ISSN: 1946-3936, e-ISSN: 1946-3944
Published February 03, 2021 by SAE International in United States
Thermodynamic Energy and Exergy Analysis of Low-Temperature Combustion Strategies
Sector:
Citation: Shirvani, S., Shirvani, S., Reitz, R., and Salehi, F., "Thermodynamic Energy and Exergy Analysis of Low-Temperature Combustion Strategies," SAE Int. J. Engines 14(3):345-367, 2021, https://doi.org/10.4271/03-14-03-0021.
Language: English

References

  1. Reitz , R. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER Editorial: The Future of the Internal Combustion Engine London, England SAGE Publications Sage UK 2020
  2. Beatrice , C. , Di Blasio , G. , and Belgiorno , G. Experimental Analysis of Functional Requirements to Exceed the 100 kW/l in High-Speed Light-Duty Diesel Engines Fuel 207 591 601 2017
  3. Di Blasio , G. , Beatrice , C. , Belgiorno , G. , Pesce , F.C. et al. Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines SAE Int. J. Engines 10 5 2342 2353 2017 https://doi.org/10.4271/2017-24-0072
  4. Onishi , S. , Jo , S.H. , Shoda , K. , Jo , P.D. et al. Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines SAE Techincal Paper 790501 1979 https://doi.org/10.4271/790501
  5. Shiraishi , T. A Study of Low Temperature Plasma-Assisted Gasoline HCCI Combustion SAE Int. J. Engines 12 1 101 113 2019 https://doi.org/10.4271/03-12-01-0008
  6. Gawale , G.R. , and Srinivasulu , G.N. Experimental Investigation of Propanol Dual Fuel HCCI Engine Performance: Optimization of Propanol Mass Flow Rate, Impact of Butanol Blends (B10/B20/B30) as Fuel Substitute for Diesel Fuel 279 118535 2020
  7. Aoyama , T. , Hattori , Y. , Ji , M. , and Sato , Y. An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine SAE Technical Paper 960081 1996 https://doi.org/10.4271/960081
  8. Kalghatgi , G.T. , Risberg , P. , and Ångström , H.-E. Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel SAE Technical Paper 2007-01-0006 2007 https://doi.org/10.4271/2007-01-0006
  9. Hanson , R. , Splitter , D. , and Reitz , R.D. Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions SAE Technical Paper 2009-01-1442 2009 https://doi.org/10.4271/2009-01-1442
  10. Lewander , C.M. , Johansson , B. , and Tunestal , P. Extending the Operating Region of Multi-Cylinder Partially Premixed Combustion Using High Octane Number Fuel SAE Technical Paper 2011-01-1394 2011 https://doi.org/10.4271/2011-01-1394
  11. Tanov , S. , Collin , R. , Johansson , B. , and Tuner , M. Combustion Stratification with Partially Premixed Combustion, PPC, Using NVO and Split Injection in a LD - Diesel Engine SAE Int. J. Engines 7 4 1911 1919 2014 https://doi.org/10.4271/2014-01-2677
  12. Xu , L. , Bai , X.-S. , Li , C. , Tunestål , P. et al. Emission Characteristics and Engine Performance of Gasoline DICI Engine in the Transition from HCCI to PPC Fuel 254 115619 2019
  13. Belgiorno , G. , Dimitrakopoulos , N. , Di Blasio , G. , Beatrice , C. et al. Effect of the Engine Calibration Parameters on Gasoline Partially Premixed Combustion Performance and Emissions Compared to Conventional Diesel Combustion in a Light-Duty Euro 6 Engine Applied Energy 228 2221 2234 2018
  14. Belgiorno , G. , Di Blasio , G. , Shamun , S. , Beatrice , C. et al. Performance and Emissions of Diesel-Gasoline-Ethanol Blends in a Light Duty Compression Ignition Engine Fuel 217 78 90 2018
  15. Belgiorno , G. , Boscolo , A. , Dileo , G. , Numidi , F. et al. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency SAE Technical Paper 2020-37-0003 2020 https://doi.org/10.4271/2020-37-0003
  16. Inagaki , K. , Fuyuto , T. , Nishikawa , K. , Nakakita , K. et al. Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability SAE Technical Paper 2006-01-0028 2006 https://doi.org/10.4271/2006-01-0028
  17. Kokjohn , S.L. , Hanson , R.M. , Splitter , D. , and Reitz , R. Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled high-Efficiency Clean Combustion International Journal of Engine Research 12 3 209 226 2011
  18. Shirvani , S. , Shirvani , S. , and Shamekhi , A.H. An Investigation of the Replacement of E10, E85, and Methane with Gasoline in Reactivity Controlled Compression Ignition Combustion: A Comparison of Alternative Fuels Using Reactivity Controlled Compression Ignition Strategy SAE Technical Paper 2020-01-5061 2020 https://doi.org/10.4271/2020-01-5061
  19. Splitter , D. , Wissink , M. , DelVescovo , D. , and Reitz , R.D. RCCI Engine Operation Towards 60% Thermal Efficiency SAE Technical Paper 2013-01-0279 2013 https://doi.org/10.4271/2013-01-0279
  20. Martin , J. , Boehman , A. , Topkar , R. , Chopra , S. et al. Intermediate Combustion Modes between Conventional Diesel and RCCI SAE Int. J. Engines 11 6 835 860 2018 https://doi.org/10.4271/2018-01-0249
  21. Pandian , M.M. , and Krishnasamy , A. Homogeneous Charge Reactivity-Controlled Compression Ignition Strategy to Reduce Regulated Pollutants from Diesel Engines SAE Int. J. Engines 12 2 159 174 2019 https://doi.org/10.4271/03-12-02-0012
  22. Wissink , M.L. 2015
  23. Wissink , M. and Reitz , R.D. Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC SAE Int. J. Engines 8 2 878 889 2015 https://doi.org/10.4271/2015-01-0856
  24. Wissink , M. and Reitz , R. Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification SAE Int. J. Engines 9 2 1036 1048 2016 https://doi.org/10.4271/2016-01-0774
  25. Wissink , M. , and Reitz , R. The Role of the Diffusion-Limited Injection in Direct Dual Fuel Stratification International Journal of Engine Research 18 4 351 365 2017
  26. Shirvani , S. , Shirvani , S. , Shamekhi , A.H. , and Reitz , R.D. A Study of Using E10 and E85 under Direct Dual Fuel Stratification (DDFS) Strategy: Exploring the Effects of the Reactivity-Stratification and Diffusion-Limited Injection on Emissions and Performance in an E10/Diesel DDFS Engine Fuel 275 117870 2020
  27. Shirvani , S. , Shirvani , S. , Shamekhi , A.H. , and Reitz , R.D. An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles SAE Int. J. Engines 13 3 311 332 2020 https://doi.org/10.4271/03-13-03-0021
  28. Shirvani , S. , Shirvani , S. , and Shamekhi , A.H. Effects of Injection Parameters and Injection Strategy on Emissions and Performance of a Two-Stroke Opposed-Piston Diesel Engine SAE Technical Paper 2020-01-5064 2020 https://doi.org/10.4271/2020-01-5064
  29. Li , Z. , Huang , G. , Zhang , Y. , Zhao , W. et al. Dual Fuel Intelligent Charge Compression Ignition (ICCI) Combustion: Efficient and Clean Combustion Technology for Compression Ignition Engines Fuel. 279 118565 2020
  30. Huang , G. , Li , Z. , Zhao , W. , Zhang , Y. et al. Effects of Fuel Injection Strategies on Combustion and Emissions of Intelligent Charge Compression Ignition (ICCI) Mode Fueled with Methanol and Biodiesel Fuel 274 117851 2020
  31. Mahabadipour , H. , Srinivasan , K.K. , and Krishnan , S.R. An Exergy Analysis Methodology for Internal Combustion Engines Using a Multi-Zone Simulation Of Dual Fuel Low Temperature Combustion Applied Energy 256 113952 2019
  32. Li , Y. , Jia , M. , Chang , Y. , Kokjohn , S.L. et al. Thermodynamic Energy and Exergy Analysis of Three Different Engine Combustion Regimes Applied Energy 180 849 858 2016
  33. Li , Y. , Jia , M. , Kokjohn , S.L. , Chang , Y. et al. Comprehensive Analysis of Exergy Destruction Sources in Different Engine Combustion Regimes Energy 149 697 708 2018
  34. Beale , J.C. , and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and Sprays 9 6 623 650 1999
  35. Liu , A.B. , Mather , D. , and Reitz , R.D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays SAE Technical Paper 930072 1993 https://doi.org/10.4271/930072
  36. Dukowicz , J.K. A Particle-Fluid Numerical Model for Liquid Sprays Journal of Computational Physics 35 2 229 253 1980
  37. Schmidt , D.P. and Rutland , C. A New Droplet Collision Algorithm Journal of Computational Physics 164 1 62 80 2000
  38. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 4-6 267 295 1995
  39. Ra , Y. and Reitz , R.D. A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels Combustion and Flame 155 4 713 738 2008
  40. Raju , M. , Wang , M. , Dai , M. , Piggott , W. et al. Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations SAE Technical Paper 2012-01-0135 2012 https://doi.org/10.4271/2012-01-0135
  41. Hiroyasu , H. and Kadota , T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines SAE Technical Paper 760129 1976 https://doi.org/10.4271/760129
  42. Heywood , J.B. Internal Combustion Engine Fundamentals Singapore Mc Graw Hill International Editions 1988
  43. Gingrich , E. , Ghandhi , J. , and Reitz , R. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes SAE Int. J. Engines 7 1 375 386 2014 https://doi.org/10.4271/2014-01-1182
  44. Senecal , P. , Pomraning , E. , Richards , K. , and Som , S. Grid-Convergent Spray Models for internal Combustion Engine CFD Simulations ASME 2012 Internal Combustion Engine Division Fall Technical Conference Vancouver, BC, Canada 2012 697 710
  45. Ferguson , C.R. , and Kirkpatrick , A.T. Internal Combustion Engines: Applied Thermosciences Chichester John Wiley & Sons 2015
  46. Primus , R.J. and Flynn , P.F. 1984
  47. Teh , K. , Miller , S. , and Edwards , C. Thermodynamic Requirements for Maximum Internal Combustion Engine Cycle Efficiency. Part 1: Optimal Combustion Strategy International Journal of Engine Research 9 6 449 465 2008
  48. DelVescovo , D. , Wang , H. , Wissink , M. , and Reitz , R.D. Isobutanol as Both Low Reactivity and High Reactivity Fuels with Addition of Di-Tert Butyl Peroxide (DTBP) in RCCI Combustion SAE Int. J. Fuels Lubr. 8 2 329 343 2015 https://doi.org/10.4271/2015-01-0839

Cited By