This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion

Journal Article
03-13-05-0038
ISSN: 1946-3936, e-ISSN: 1946-3944
Published August 14, 2020 by SAE International in United States
The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion
Citation: Goyal, H., Dyuisenakhmetov, A., Houidi, M., Johansson, B. et al., "The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion," SAE Int. J. Engines 13(5):603-615, 2020, https://doi.org/10.4271/03-13-05-0038.
Language: English

References

  1. ExxonMobil 2018
  2. Kalghatgi , G.T. The Outlook for Fuels for Internal Combustion Engines Int. J. Engine Res. 15 4 383 398 2014 https://doi.org/10.1177/1468087414526189
  3. Reitz , R.D. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER Editorial: The Future of the Internal Combustion Engine Int. J. Engine Res. 21 1 3 10 2020 https://doi.org/10.1177/1468087419877990
  4. Ritchie , H. and Roser , M. 2 2017
  5. https://ec.europa.eu/clima/policies/transport_en 2020
  6. Kook , S. , Bae , C. , Miles , P.C. , Choi , D. et al. The Influence of Charge Dilution and Injection Timing on Low-temperature Diesel Combustion and Emissions SAE Technical Paper 2005-01-3837 2005 https://doi.org/10.4271/2005-01-3837
  7. Noehre , C. , Andersson , M. , Johansson , B. , and Hultqvist , A. Characterization of Partially Premixed Combustion SAE Technical Paper 2006-01-3412 2006 https://doi.org/10.4271/2006-01-3412
  8. Maurya , R.K. and Agarwal , A.K. Experimental Study of Combustion and Emission Characteristics of Ethanol Fuelled Port Injected Homogeneous Charge Compression Ignition (HCCI) Combustion Engine Appl. Energy 88 4 1169 1180 2011 https://doi.org/10.1016/j.apenergy.2010.09.015
  9. Christensen , M. , Johansson , B. , and Einewall , P. Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation SAE Technical Paper 972874 1997 https://doi.org/10.4271/972874
  10. Splitter , D. , Hanson , R. , Kokjohn , S. , and Reitz , R.D. Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels SAE Technical Paper 2011-01-0363 2011 https://doi.org/10.4271/2011-01-0363
  11. Kokjohn , S. , Reitz , R.D. , Splitter , D. , and Musculus , M. Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence SAE Int. J. Engines 5 2 248 269 2012 https://doi.org/10.4271/2012-01-0375
  12. Tang , Q. , Liu , H. , Ran , X. , Li , M. et al. Effects of Direct-Injection Fuel Types and Proportion on Late-Injection Reactivity Controlled Compression Ignition Combust. Flame 211 445 455 2020 https://doi.org/10.1016/j.combustflame.2019.10.018
  13. Kalghatgi , G.T. , Risberg , P. , and Ångström , H.-E. Advantages of Fuels with High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 https://doi.org/10.4271/2006-01-3385
  14. Goyal , H. , Kook , S. , and Ikeda , Y. The Influence of Fuel Ignition Quality and First Injection Proportion on Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Engine Fuel 235 1207 1215 2019 https://doi.org/10.1016/j.fuel.2018.08.090
  15. Goyal , H. and Kook , S. Ignition Process of Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Optical Engine Fuel 256 115844 2019 https://doi.org/10.1016/j.fuel.2019.115844
  16. Tang , Q. , Liu , H. , Li , M. , and Yao , M. Optical Study of Spray-Wall Impingement Impact on Early-Injection Gasoline Partially Premixed Combustion at Low Engine Load Appl. Energy 185 708 719 2017 https://doi.org/10.1016/j.apenergy.2016.10.108
  17. Goyal , H. , Kook , S. , Hawkes , E. , Chan , Q.N. et al. Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine SAE Technical Paper 2017-01-0742 2017 https://doi.org/10.4271/2017-01-0742
  18. Goyal , H. , Zhang , Y. , Kook , S. , Kim , K.S. et al. Low- to High-Temperature Reaction Transition in a Small-Bore Optical Gasoline Compression Ignition (GCI) Engine SAE Int. J. Engines 12 5 473 488 2019 https://doi.org/10.4271/03-12-05-0031
  19. Manente , V. , Johansson , B. , Tunestal , P. , and Cannella , W. Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion SAE Int. J. Engines 2 2 71 88 2009 https://doi.org/10.4271/2009-01-2668
  20. Liu , H. , Tang , Q. , Yang , Z. , Ran , X. et al. A Comparative Study on Partially Premixed Combustion (PPC) and Reactivity Controlled Compression Ignition (RCCI) in an Optical Engine Proc. Combust. Inst. 37 4 4759 4766 2019 https://doi.org/10.1016/j.proci.2018.06.004
  21. Cummins , L. Diesel’s Engine: From Conception to 1918 Wilsonville, OR Carnot Press 1993
  22. Clarke , J. and O’Malley , E. Analytical Comparison of a Turbocharged Conventional Diesel and a Naturally Aspirated Compact Compression Ignition Engine Both Sized for a Highway Truck SAE Technical Paper 2013-01-1736 2013 https://doi.org/10.4271/2013-01-1736
  23. Phillips , F. , Gilbert , I. , Pirault , J.P. , and Megel , M. Scuderi Split Cycle Research Engine: Overview, Architecture and Operation SAE Int. J. Engines 4 1 450 466 2011 https://doi.org/10.4271/2011-01-0403
  24. Jackson , N. , https://www.greencarcongress.com/2013/09/20130904-ricardo.html 2020
  25. Lam , N. , Tuner , M. , Tunestal , P. , Andersson , A. et al. Double Compression Expansion Engine Concepts: A Path to High Efficiency SAE Int. J. Engines 8 4 1562 1578 2015 https://doi.org/10.4271/2015-01-1260
  26. Lam , N. , Tunestal , P. , and Andersson , A. Simulation of System Brake Efficiency in a Double Compression-Expansion Engine-Concept (DCEE) Based on Experimental Combustion Data SAE Technical Paper 2019-01-0073 2019 https://doi.org/10.4271/2019-01-0073
  27. Lam , N. , Andersson , A. , and Tunestal , P. Double Compression Expansion Engine Concepts: Efficiency Analysis Over a Load Range SAE Technical Paper 2018-01-0886 2018 https://doi.org/10.4271/2018-01-0886
  28. Babayev , R. , Ben Houidi , M. , Andersson , A. , and Johansson , B. Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept SAE Technical Paper 2019-01-0085 2019 https://doi.org/10.4271/2019-01-0085
  29. Dyuisenakhmetov , A. , Goyal , H. , Ben Houidi , M. , Babayev , R. et al. Isobaric Combustion at a Low Compression Ratio SAE Technical Paper 2020-01-0797 2020 https://doi.org/10.4271/2020-01-0797
  30. Okamoto , T. and Uchida , N. New Concept for Overcoming the Trade-Off between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine SAE Int. J. Engines 9 2 859 867 2016 https://doi.org/10.4271/2016-01-0729
  31. Meek , G.A. , Williams , R. , Thornton , D. , Knapp , P. et al. F2E - Ultra High Pressure Distributed Pump Common Rail System SAE Technical Paper 2014-01-1440 2014 https://doi.org/10.4271/2014-01-1440
  32. Aljohani , B.S.E. , Ben Houidi , M. , Babayev , R. , Aljohani , K. et al. In Situ Injection Rate Measurement to Study Single and Split Injections in a Heavy-Duty Diesel Engine SAE Technical Paper 2019-24-0136 2019 https://doi.org/10.4271/2019-24-0136
  33. Babayev , R. , Ben Houidi , M. , Shankar , V. , Shankar , B. et al. Injection Strategies for the Isobaric Combustion SAE Technical Paper 2019-01-2267 2019 https://doi.org/10.4271/2019-01-2267
  34. Heywood , J.B. Internal Combustion Engine Fundamentals First New York McGraw-Hill 1988
  35. Nyrenstedt , G. , Al Ramadan , A. , Tang , Q. , Badra , J. et al. Isobaric Combustion for High Efficiency in an Optical Diesel Engine SAE Technical Paper 2020-01-0301 2020 https://doi.org/10.4271/2020-01-0301

Cited By