This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Aspects Affecting Heat Transfer in ICE Applications and Definition of a Temperature Wall Function Accounting for the Boundary Layer Compressibility

Journal Article
03-12-05-0034
ISSN: 1946-3936, e-ISSN: 1946-3944
Published August 22, 2019 by SAE International in United States
Numerical Aspects Affecting Heat Transfer in ICE Applications and Definition of a Temperature Wall Function Accounting for the Boundary Layer Compressibility
Sector:
Citation: Ricci, M., Pulga, L., Bianchi, G., Falfari, S. et al., "Numerical Aspects Affecting Heat Transfer in ICE Applications and Definition of a Temperature Wall Function Accounting for the Boundary Layer Compressibility," SAE Int. J. Engines 12(5):525-541, 2019, https://doi.org/10.4271/03-12-05-0034.
Language: English

References

  1. Ferrari , G. Internal Combustion Engine Second Rome Il Capitello 2014 ISBN: 9788874887651
  2. Falfari , S. , Bianchi , G. , Cazzoli , G. , Ricci , M. et al. Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis SAE Technical Paper 2019-01-0266 2019 10.4271/2019-01-0266
  3. Cheng , X. , Wang , X. , Ming , Y. , Hongfei , Z. et al. Thermal-Mechanical Fatigue Analysis of Diesel Engine Cylinder Head Based on Fluid-Structure Interaction SAE Technical Paper 2015-01-0558 2015 10.4271/2015-01-0558
  4. Cha , S. , Ha , E. , Lee , K. , and Chang , H. Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE SAE Int. J. Mater. Manf. 2 1 403 408 2009 10.4271/2009-01-0820
  5. Cicalese , G. , Berni , F. , Fontanesi , S. , D’Adamo , A. et al. A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation SAE Technical Paper 2017-01-2196 2017 10.4271/2017-01-2196
  6. Alkidas , A.C. Heat Transfer Characteristics of a Spark-Ignition Engine ASME. J. Heat Transfer 102 2 189 193 1980 10.1115/1.3244258
  7. Alkidas , A.C. and Myers , J.P. Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine ASME. J. Heat Transfer 104 1 62 67 1982 10.1115/1.3245069
  8. Versteeg , H.K. and Malalasekera , W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method England Pearson Prentice Hall 2007 0131274988
  9. Chiodi , M. and Bargende , M. Improvement of Engine Heat-Transfer Calculation in the Three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model SAE Technical Paper 2001-09-3601 2001 10.4271/2001-01-3601
  10. Decan , G. , Broekaert , S. , Lucchini , T. , D’Errico , G. et al. Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation SAE Technical Paper 2017-24-0032 2017 10.4271/2017-24-0032
  11. Launder , B.E. and Spalding , D.B. The Numerical Computation of Turbulent Flow Computational Methods in Applied Mechanical Engineering 3 2 269 289 1974 10.1016/0045-7825(74)90029-2
  12. Kays , W.M. and Crawford , M.E. Convective Heat and Mass Transfer Third New York McGraw-Hill 1993 978-0070337213
  13. Rakopoulos , C.D. , Kosmadakis , G.M. , and Pariotis , E.G. Critical Evaluation of Current Heat Transfer Models Used in CFD In-Cylinder Engine Simulations and Establishment of a Comprehensive Wall-Function Formulation Applied Energy 87 1612 1630 10.1016/j.apenergy.2009.09.029
  14. Huh , K. , Chang , I. , and Martin , J. A Comparison of Boundary Layer Treatments for Heat Transfer in IC Engines SAE Technical Paper 900252 1990 10.4271/900252
  15. Oude Nijeweme , D.J. et al. Unsteady In-Cylinder Heat Transfer in a Spark Ignition Engine: Experiments and Modelling Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 215 6 747 760 2001 https://doi.org/10.1243/0954407011528329
  16. Han , Z. and Reitz , R.D. A Temperature Wall Function Formulation for Variable-Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling International Journal of Heat and Mass Transfer 40 3 613 625 1997 10.1016/0017-9310(96)00117-2
  17. Reitz , R. Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations SAE Technical Paper 910267 1991 10.4271/910267
  18. Angelberger , C. 1997
  19. Keum , S. , Park , H. , Babajimopoulos , A. , Assanis , D.N. , and Jung , D. Modelling of Heat Transfer in Internal Combustion Engines with Variable Density Effect International Journal of Engine Research 12 6 513 526 2011 10.1177/1468087411410015
  20. Saric , S. and Basara , B. A Hybrid Wall Heat Transfer Model for IC Engine Simulations SAE Int. J. Engines 8 2 411 418 2015 10.4271/2015-01-0388
  21. Sarić , S. , Basara , B. , and Zunic , Z. Advanced Near-Wall Modeling for Engine Heat Transfer International Journal of Heat and Fluid Flow 63 205 211 2017 10.1016/j.ijheatfluidflow.2016.06.019
  22. Cicalese , G. , Berni , F. , and Fontanesi , S. Integrated In-Cylinder/CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines SAE Int. J. Engines 9 1 601 617 2016 10.4271/2016-01-0578
  23. Han , Z. and Reitz , R.D. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models Combustion Science and Technology 106 4-6 267 295 1995 10.1080/00102209508907782
  24. Nuutinen , M. , Kaario , O. , and Larmi , M. Conjugate Heat Transfer in CI Engine CFD Simulations SAE Technical Paper 2008-01-0973 2008 10.4271/2008-01-0973
  25. Falfari , S. and Bianchi , G. Development of an Ignition Model for S.I. Engines Simulation SAE Technical Paper 2007-01-0148 2007 10.4271/2007-01-0148
  26. Poinsot , T. and Veynante , D. Theoretical and Numerical Combustion Second Philadelphia R.T. Edwards Inc. 2005 1930217102
  27. Nuutinen , M.A. , Kaario , O.T. , Vuorinen , V.A. , Nwosu , P.N. , and Larmi , M.J. Imbalance Wall Functions with Density and Material Property Variation Effects Applied to Engine Heat Transfer Computational Fluid Dynamics Simulations International Journal of Engine Research 15 3 307 324 2014 10.1177/1468087413481779
  28. Berni , F. , Fontanesi , S. , Cicalese , G. , and D’Adamo , A. Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines SAE Int. J. Commer. Veh. 10 2 547 561 2017 10.4271/2017-01-0569

Cited By