Open Access

Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space

Journal Article
03-12-02-0014
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 14, 2019 by SAE International in United States
Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space
Citation: Brahma, I., "Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space," SAE Int. J. Engines 12(2):185-202, 2019, https://doi.org/10.4271/03-12-02-0014.
Language: English

References

  1. Röpke , K. , Baumann , W. , Köhler , B.U. , Schaum , S. et al. Engine Calibration Using Nonlinear Dynamic Modeling Identification for Automotive Systems London Springer 2012 165 182
  2. Atkinson , C.M. , Allain , M. , and Zhang , H. Using Model-Based Rapid Transient Calibration to Reduce Fuel Consumption and Emissions in Diesel Engines SAE Technical Paper 2008-01-1365 2008 10.4271/2008-01-1365
  3. Atkinson , C.M. and Mott , G. Dynamic Model-Based Calibration Optimization: An introduction and Application to Diesel Engines SAE Technical Paper 2005-01-0026 2005 10.4271/2005-01-0026
  4. Burke , R.D. , Baumann , W. , Akehurst , S. , and Brace , C.J. Dynamic Modelling of Diesel Engine Emissions Using the Parametric Volterra Series Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228 2 164 179 2014
  5. Millo , F. , Arya , P. , and Mallamo , F. Optimization of Automotive Diesel Engine Calibration Using Genetic Algorithm Techniques Energy 2018
  6. Lee , T. and Reitz , R.D. Response Surface Method Optimization of a High-Speed Direct-Injection Diesel Engine Equipped with a Common Rail Injection System Journal of Engineering for Gas Turbines and Power 125 541 546 2003
  7. Liu , Y. , Reitz , R.D. , and Lu , F. Development and Application of a Non-Gradient Step-Controlled Search Algorithm for Engine Combustion Optimization SAE Technical Paper 2006-01-0239 2006 10.4271/2006-01-0239
  8. Brahma , I. and Rutland , C.J. Optimization of Diesel Engine Operating Parameters Using Neural Networks SAE Technical Paper 2003-01-3228 2003 10.4271/2003-01-3228
  9. Benz , M. , Hehn , M. , Onder , C.H. , and Guzzella , L. Model-Based Actuator Trajectories Optimization for a Diesel Engine Using Direct Method Journal of Engineering for Gas Turbines and Power 133 032806 2011
  10. Malikopoulos , A.A. , Assanis , D.N. , and Papalambros , P.Y. Real-Time Self-Learning Optimization of Diesel Engine Calibration Journal of Engineering for Gas Turbines and Power 131 022803 2009
  11. Brahma , I. , Sharp , M.C. , Richter , I.B. , and Frazier , T.R. Development of the Nearest Neighbor Multivariate Localized Regression Modeling Technique for Steady State Engine Calibration and Comparison With Neural Networks and Global Regression International Journal of Engine Research 9 4 297 323(27) 2008
  12. https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/
  13. Brahma , I. Advantages and Applications of Transforming Empirical Model Input Space with Dimensional Models International Journal of Engine Research 15 7 877 894 2014
  14. Scholkopf , B. and Smola , A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond MIT Press 2001
  15. Wood , S.N. Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive Models Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 495 518 2008
  16. Barrios , J.A. , Torres-Alvarado , M. , Cavazos , A. , and Leduc , L. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill Journal of Materials Engineering and Performance 20 7 1128 1139 2011
  17. Brahma , I. , He , Y. , and Rutland , C.J. Improvement of Neural Network Accuracy for Engine Simulations SAE Technical Paper 2003-01-3227 2003 10.4271/2003-01-3227
  18. Braun , J.E. and Chaturvedi , N. An Inverse Gray-Box Model for Transient Building Load Prediction HVAC&R Research 8 1 73 99 2002
  19. Masoudinejad , M. , Kamat , M. , Emmerich , J. , ten Hompel , M. et al. A Gray Box Modeling of a Photovoltaic Cell under Low Illumination in Materials Handling Application Renewable and Sustainable Energy Conference (IRSEC), 2015 3rd International December 2015 1 6
  20. Aghmasheh , R. , Rashtchi , V. , and Rahimpour , E. Gray Box Modeling of Power Transformer Windings for Transient Studies IEEE Transactions on Power Delivery 2017
  21. Drioli , C. and Foresti , G.L. Data-Driven Vocal Folds Models for the Representation of Both Acoustic and High Speed Video Data Neural Networks (IJCNN), 2015 International Joint Conference on July 2015 1 6
  22. Greenwood , E. and Schmitz , F.H. 2010
  23. Limber , P.W. et al. Unraveling the Dynamics that Scale Cross-Shore Headland Relief on Rocky Coastlines: 1. Model Development Journal of Geophysical Research: Earth Surface 119 4 854 873 2014
  24. Kristensen , N.R. , Madsen , H. , and Jørgensen , S.B. Parameter Estimation in Stochastic Grey-Box Models Automatica 40 2 225 237 2004
  25. Raue , A. , Steiert , B. , Schelker , M. , Kreutz , C. et al. Data2Dynamics: A Modeling Environment Tailored to Parameter Estimation in Dynamical Systems Bioinformatics 2015
  26. Tan , K.C. and Li , Y. Grey-Box Model Identification via Evolutionary Computing Control Engineering Practice 10 7 673 684 2002
  27. Van Can , H.J.L. , Hellinga , C. , Luyben , K. , Ch , A.M. et al. Strategy for Dynamic Process Modeling Based on Neural Networks in Macroscopic Balances AIChE Journal 42 3403 3418 1996 10.1002/aic.690421211
  28. Wang , J.X. , Wu , J.L. , and Xiao , H. Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data Physical Review Fluids 2 3 034603 2017
  29. Parish , E.J. and Duraisamy , K. A Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning Journal of Computational Physics 305 758 774 2016
  30. Corzo , G.A. , Solomatine , D.P. , Wit , M.D. , Werner , M. et al. Combining Semi-Distributed Process-Based and Data-Driven Models in Flow Simulation: A Case Study of the Meuse River Basin Hydrology and Earth System Sciences 13 9 1619 1634 2009
  31. Tinoco , R.O. , Goldstein , E.B. , and Coco , G. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities on Flows Through Submerged Arrays of Rigid Cylinders Water Resources Research 51 2 1247 1263 2015
  32. Goldstein , E.B. , Coco , G. , and Murray , A.B. Prediction of Wave Ripple Characteristics Using Genetic Programming Continental Shelf Research 71 1 15 2013
  33. Limber , P.W. , Brad Murray , A. , Adams , P.N. , and Goldstein , E.B. Unraveling the Dynamics that Scale Cross-Shore Headland Relief on Rocky Coastlines: 1. Model Development Journal of Geophysical Research: Earth Surface 119 4 854 873 2014
  34. Limber , P.W. and Murray , A.B. Unraveling the Dynamics that Scale Cross-Shore Headland Relief on Rocky Coastlines: 2. Model Predictions and Initial Tests Journal of Geophysical Research: Earth Surface 119 4 874 891 2014
  35. Raissi , M. , Perdikaris , P. , and Karniadakis , G.E. 2017
  36. Raissi , M. , Perdikaris , P. , and Karniadakis , G.E. 2017
  37. Raissi , M. and Karniadakis , G.E. Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations Journal of Computational Physics 357 125 141 2018
  38. Weymouth , G.D. and Yue , D.K. Physics-Based Learning Models for Ship Hydrodynamics Journal of Ship Research 57 1 1 12 2013
  39. Hess , D.E. , Faller , W.E. , Fu , T.C. , and Ammeen , E.S. Development of an Advanced Ship Simulation & Control System Using Neural Networks Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems Arlington, VA 2005 10.1109/ISAP.2005.1599272
  40. Brahma , I. , Rutland , C.J. , Foster , D.E. , and He , Y. A New Approach to System Level Soot Modeling SAE Technical Paper 2005-01-1122 2005 10.4271/2005-01-1122

Cited By