This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Partial Transparency of Advanced Compression Ignition Combustion Chamber Deposits, Its Impact on Combustion Chamber Wall Temperatures and Application to Thermal Barrier Coating Design

Journal Article
03-11-02-0012
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 18, 2018 by SAE International in United States
Partial Transparency of Advanced Compression Ignition Combustion Chamber Deposits, Its Impact on Combustion Chamber Wall Temperatures and Application to Thermal Barrier Coating Design
Citation: Hoffman, M., O’Donnell, R., and Filipi, Z., "Partial Transparency of Advanced Compression Ignition Combustion Chamber Deposits, Its Impact on Combustion Chamber Wall Temperatures and Application to Thermal Barrier Coating Design," SAE Int. J. Engines 11(2):179-194, 2018, https://doi.org/10.4271/03-11-02-0012.
Language: English

References

  1. Güralp, O., Hoffman, M., Assanis, D., Filipi, Z. et al., “Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine,” SAE Technical Paper 2006-01-3277, 2006, doi:10.4271/2006-01-3277.
  2. Güralp, O.A., “The Effect of Combustion Chamber Deposits on Heat Transfer and Combustion in a Homogeneous Charge Compression Ignition Engine,” Ph.D. dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 2008.
  3. Güralp, O., Hoffman, M., Assanis, D., Filipi, Z. et al., “Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements,” SAE Technical Paper 2009-01-0668, 2009, doi:10.4271/2009-01-0668.
  4. Kamo, R., Assanis, D., and Bryzik, W., “Thin Thermal Barrier Coatings for Engines,” SAE Technical Paper 890143, 1989, doi:10.4271/890143.
  5. Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al., “Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate ThermoPhysical Properties for Heat Insulation Coat,” SAE Int. J. Engines 6(1):142-149, 2013, doi:10.4271/2013-01-0274.
  6. Powell, T., O’Donnell, R., Killingsworth, N., Prucka, R., Hoffman, M., and Filipi, Z., “Predicting the Gas-Wall Boundary Conditions in a Thermal Barrier Coated Low Temperature Combustion Engine Using Sub-Coating Temperature Measurements,” International Journal of Powertrains 6(2):125-150, 2017, doi: 10.1504/IJPT.2017.10006633.
  7. Powell, T., O’Donnell, R., Hoffman, M., and Filipi, Z., “Impact of a Yttria Stabilized Zirconia Thermal Barrier Coating on HCCI Engine Combustion, Emissions and Efficiency,” ASME ICEF, Greenville, SC, ICEF2016-9391, 2016.
  8. O’Donnell, R., Hoffman, M., and Filipi, Z., “Estimation of Thermal Barrier Coating Surface Temperature and Heat Flux Profiles in a Low Temperature Combustion Engine Using a Modified Sequential Function Specification Approach,” ASME Journal of Heat Transfer 139(4):041201, Jan. 10, 2017, doi:10.1115/1.4035101.
  9. O’Donnell, R., Powell, T., Hoffman, M., and Filipi, Z., “Inverse Analysis of In-Cylinder Gas-Wall Boundary Conditions: Investigation of a Yttria Stabilized Zirconia Thermal Barrier Coating for Homogeneous Charge Compression Ignition,” ASME Journal of Gas Turbines and Power 139(10):102808, May 09, 2017, doi:10.1115/1.4036387.
  10. Deshmukh, K.V., Haworth, D.C., and Modest, M.F., “Direct Numerical Simulation of Turbulence-Radiation Interactions in Homogeneous Nonpremixed Combustion Systems,” Proceedings of the Combustion Institute 31:1641-1648, 2007, doi:10.1016/j.proci.2006.07.
  11. Haworth, D., Roy, S., Cai, J., Sircar, A. et al., “Modeling Radiative Heat Transfer in Engines,” International Multidimensional Engine Modeling User’s Group Meeting at the SAE CongressDetroit, MI, Apr. 20, 2015.
  12. Cheng, S. and Kim, C., “Effect of Engine Operating Parameters on Engine Combustion Chamber Deposits,” SAE Technical Paper 902108, 1990, doi:10.4271/902108.
  13. Nakic, D., Assanis, D., and White, R., “Effect of Elevated Piston Temperature on Combustion Chamber Deposit Growth,” SAE Technical Paper 940948, 1994, doi:10.4271/940948.
  14. Kalghatgi, G., McDonald, C., and Hopwood, A., “An Experimental Study of Combustion Chamber Deposits and their Effects in a Spark-Ignition Engine,” SAE Technical Paper 950680, 1995, doi:10.4271/950680.
  15. LaVigne, P., Anderson, C., and Prakash, C., “Unsteady Heat Transfer and Fluid Flow in Porous Combustion Chamber Deposits,” SAE Technical Paper 860241, 1986, doi:10.4271/860241.
  16. Tree, D., Wiczynski, P., and Yonushonis, T., “Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion,” SAE Technical Paper 960036, 1996, doi:10.4271/960036.
  17. Tree, D., Oren, D., Yonushonis, T., and Wiczynski, P., “Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer,” SAE Technical Paper 960317, 1996, doi:10.4271/960317.
  18. Chang, J., Filipi, Z., Assanis, D., Kuo, T.-W. et al., “Characterizing the Thermal Sensitivity of a Gasoline Homogeneous Charge Compression Ignition Engine with Measurements of Instantaneous Wall Temperature and Heat Flux,” International Journal of Engine Research 6:289-309, 2005, doi:10.1243/146808705X30558.
  19. Dronniou, N. and Dec, J., “Investigating the Development of Thermal Stratification from the Near-Wall Regions to the Bulk-Gas in an HCCI Engine with Planar Imaging Thermometry,” SAE Int. J. Engines 5(3):1046-1074, 2012, doi:10.4271/2012-01-1111.
  20. Allen, J. and Law, D., “Variable Valve Actuated Controlled Auto-Ignition: Speed Load Maps and Strategic Regimes of Operation,” SAE Technical Paper 2002-01-0422, 2002, doi:10.4271/2002-01-0422.
  21. Eng, J., “Characterization of Pressure Waves in HCCI Combustion,” SAE Technical Paper 2002-01-2859, 2002, doi:10.4271/2002-01-2859.
  22. Christensen, M. and Johansson, B., “Influence of Mixture Quality on Homogeneous Charge Compression Ignition,” SAE Technical Paper 982454, 1998, doi:10.4271/982454.
  23. Kaneko, N., Ando, H., Ogawa, H., and Miyamoto, N., “Expansion of the Operating Range with In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine,” SAE Technical Paper 2002-01-1743, 2002, doi:10.4271/2002-01-1743.
  24. Sjöberg, M., Dec, J.E., and Cernansky, N.P., “Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments,” SAE Technical Paper 2005-01-0113, 2005, doi:10.4271/2005-01-0113.
  25. Krasselt, J., Foster, D., Ghandhi, J., Herold, R. et al., “Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion - Part I: Metal Engine Results,” SAE Technical Paper 2009-01-1105, 2009, doi:10.4271/2009-01-1105.
  26. Herold, R., Krasselt, J., Foster, D., Ghandhi, J. et al., “Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion-Part II: Optical Engine Results,” SAE Int. J. Engines 2(1):1034-1053, 2009, doi:10.4271/2009-01-1106.
  27. Martinez-Frias, J., Aceves, S., Flowers, D., Smith, J. et al., “HCCI Engine Control by Thermal Management,” SAE Technical Paper 2000-01-2869, 2000, doi:10.4271/2000-01-2869.
  28. Christensen, M. and Johansson, B., “Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel,” SAE Technical Paper 2000-01-1835, 2000, doi:10.4271/2000-01-1835.
  29. Milovanovic, N., Blundell, D., Pearson, R., Turner, J. et al., “Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature,” SAE Technical Paper 2005-01-0157, 2005, doi:10.4271/2005-01-0157.
  30. Christensen, M., Johansson, B., and Einewall, P., “Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation,” SAE Technical Paper 972874, 1997, doi:10.4271/972874.
  31. Dec, J., Hwang, W., and Sjöberg, M., “An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging,” SAE Technical Paper 2006-01-1518, 2006, doi:10.4271/2006-01-1518.
  32. Hoffman, M.A., Lawler, B.J., Güralp, O., Najt, P.M., and Filipi, Z.S., “The Impact of a Magnesium Zirconate Thermal Barrier Coating on Homogeneous Charge Compression Ignition Operational Variability and the Formation of Combustion Chamber Deposits,” International Journal of Engine Research 16:968-981, 2015, doi:10.1177/1468087414561274.
  33. Nishiwaki, K. and Hafnan, M., “The Determination of Thermal Properties of Engine Combustion Chamber Deposits,” SAE Technical Paper 2000-01-1215, 2000, doi:10.4271/2000-01-1215.
  34. Hopwood, A., Chynoweth, S., and Kalghatgi, G., “A Technique to Measure Thermal Diffusivity and Thickness of Combustion Chamber Deposits In-Situ,” SAE Technical Paper 982590, 1998, doi:10.4271/982590.
  35. Ortiz-Soto, E.A., Vavra, J., and Babajimopoulos, A., “Assessment of Residual Mass Estimation Methods for Cylinder Pressure Heat Release Analysis of HCCI Engines with Negative Valve Overlap,” Journal of Engineering for Gas Turbines and Power 134(8):082802-082802-9, 2012, doi:10.1115/1.4006701.
  36. Hoffman, M., Lawler, B., Filipi, Z., Guralp, O., and Najt, P., “Development of a Device for the Nondestructive Thermal Diffusivity Determination of Combustion Chamber Deposits and Thin Coatings,” J. of Heat Transfer 136(7):071601, Mar. 17, 2014, doi:10.1115/1.4026908.
  37. Chang, J., Güralp, O., Filipi, Z., Assanis, D. et al., “New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux,” SAE Technical Paper 2004-01-2996, 2004, doi:10.4271/2004-01-2996.
  38. Goldstein, H., “The Reaction of Active Nitrogen with Graphite,” Journal of Physical Chemistry 68(1):39-42, 1964, doi:10.1021/j100783a007.
  39. McCaroll, B. and McKee, D.W., “The Reactivity of Graphite Surfaces with Atoms and Molecules of Hydrogen, Oxygen and Nitrogen,” Carbon 9(3):301-304, 1971, doi:10.1016/0008-6223(71)90049-2.
  40. Giberson, R.C. and Walker, J.P., “Reaction of Nuclear Graphite with Water Vapor - Part 1: Effect of Hydrogen and Water Vapor Partial Pressures,” Carbon 3(4):521-525, 1966, doi:10.1016/0008-6223(66)90037-6.
  41. Walker, P.L., Rusinko, F., and Austin, L.G., “Gas Reactions of Carbon,” Advances in Catalysis 11:133-221, 1959, doi:10.1016/S0360-0564(08)60418-6.
  42. Hoffman, M. and Filipi, Z., “Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits,” SAE Technical Paper 2015-24-2449, 2015, doi:10.4271/2015-24-2449.
  43. Funk, C., Sick, V., Reuss, D., and Dahm, W., “Turbulence Properties of High and Low Swirl In-Cylinder Flows,” SAE Technical Paper 2002-01-2841, 2002, doi:10.4271/2002-01-2841.
  44. Hoffmann, K.A. and Chiang, S.T., Computational Fluid Dynamics Volume I, (Wichita, Engineering Education System, 2000), ISBN:9780962373107.
  45. Alkidas, A.C., “Heat Transfer Characteristics of a Spark-Ignition Engine,” Journal of Heat Transfer 102(2):189-193, 1980, doi:10.1115/1.3244258.

Cited By