This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LSPI Durability, a Study of LSPI over the Life of a Vehicle

Journal Article
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 01, 2018 by SAE International in United States
LSPI Durability, a Study of LSPI over the Life of a
Citation: Michlberger, A. and Sutton, M., "LSPI Durability, a Study of LSPI over the Life of a Vehicle," SAE Int. J. Engines 11(1):23-38, 2018,
Language: English


  1. Yabu, T., Yasuhara, S., and Kashiwagi, M., “Development of GFRTP Crush Box with Consideration of Use Environment and Effect of Fiber Orientation,” SAE Int. J. Mater. Manf. 10(2):191-197, 2017, doi:10.4271/2017-01-0498.
  2. Peckham, R., Basu, S., Ribeiro, M., and Walker, S., “Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China,” SAE Int. J. Passeng. Cars - Mech. Syst. 10(2):455-464, 2017, doi:10.4271/2017-01-1297.
  3. DeMarco, K., Stratton, J., Chinavare, K., and VanHouten, G., “The Effects of Mass and Wheel Aerodynamics on Vehicle Fuel Economy,” SAE Technical Paper 2017-01-1533, 2017, doi:10.4271/2017-01-1533.
  4. Vaidyanathan, H., Murty, P., and Eswara, S., “Hybrid Natural Fiber Composites Molded Auto-Body Panels/Skins (Hybrid NFPC): Processing, Characterization & Modeling,” SAE Technical Paper 2011-01-0219, 2011, doi:10.4271/2011-01-0219.
  5. Hakariya, M., Toda, T., and Sakai, M., “The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine,” SAE Technical Paper 2017-01-1021, 2017, doi:10.4271/2017-01-1021.
  6. Hardy, A., Heywood, J., and Kenney, T., “Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System,” SAE Int. J. Engines 1(1):1263-1277, 2009, doi:10.4271/2008-01-2512.
  7. Kleeberg, H., Tomazic, D., Dohmen, J., Wittek, K. et al., “Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System,” SAE Technical Paper 2013-01-0288, 2013, doi:10.4271/2013-01-0288.
  8. Tsuchida, H., Hiraya, K., Tanaka, D., Shigemoto, S. et al., “The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine,” SAE Technical Paper 2007-01-4004, 2007, doi:10.4271/2007-01-4004.
  9. Schoenhaber, J., Kuehn, N., Bradler, B., Richter, J. et al., “Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles,” SAE Technical Paper 2017-01-0924, 2017, doi:10.4271/2017-01-0924.
  10. Kapadia, J., Kok, D., Jennings, M., Kuang, M. et al., “Powersplit or Parallel - Selecting the Right Hybrid Architecture,” SAE Int. J. Alt. Power. 6(1):68-76, 2017, doi:10.4271/2017-01-1154.
  11. Dahnz, C., Han, K., Spicher, U., Magar, M. et al., “Investigations on Pre-Ignition in Highly Supercharged SI Engines,” SAE Int. J. Engines 3(1):214-224, 2010, doi:10.4271/2010-01-0355.
  12. Shinagawa, T., Kudo, M., Matsubara, W., and Kawai, T., “The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine,” SAE Technical Paper 2015-01-1268, 2015, doi:10.4271/2015-01-1268.
  13. Haenel, P., Kleeberg, H., de Bruijn, R., and Tomazic, D., “Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines,” SAE Int. J. Fuels Lubr. 10(1):95-105, 2017, doi:10.4271/2017-01-0687.
  14. Kuboyama, T., Moriyoshi, Y., and Morikawa, K., “Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range,” SAE Int. J. Engines 8(2):529-537, 2015, doi:10.4271/2015-01-0761.
  15. Hirano, S., Yamashita, M., Fujimoto, K., and Kato, K., “Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines (Part 2),” SAE Technical Paper 2013-01-2569, 2013, doi:10.4271/2013-01-2569.
  16. Wang, Z., Liu, H., Song, T., Xu, Y. et al., “Investigation on Pre-ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines,” SAE Technical Paper 2014-01-1212, 2014, doi:10.4271/2014-01-1212.
  17. Amann, M., Mehta, D., and Alger, T., “Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines,” SAE Int. J. Engines 4(1):274-285, 2011, doi:10.4271/2011-01-0342.
  18. Chapman, E., Davis, R., Studzinski, W., and Geng, P., “Fuel Octane and Volatility Effects on the Stochastic Pre-Ignition Behavior of a 2.0L Gasoline Turbocharged DI Engine,” SAE Int. J. Fuels Lubr. 7(2):379-389, 2014, doi:10.4271/2014-01-1226.
  19. Zahdeh, A., Rothenberger, P., Nguyen, W., Anbarasu, M. et al., “Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines,” SAE Int. J. Engines 4(1):246-273, 2011, doi:10.4271/2011-01-0340.
  20. Luo, X., Teng, H., Hu, T., Miao, R. et al., “Mitigating Intensities of Super Knocks Encountered in Highly Boosted Gasoline Direct Injection Engines,” SAE Technical Paper 2015-01-0084, 2015, doi:10.4271/2015-01-0084.
  21. Takeuchi, K., Fujimoto, K., Hirano, S., and Yamashita, M., “Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines,” SAE Int. J. Fuels Lubr. 5(3):1017-1024, 2012, doi:10.4271/2012-01-1615.
  22. Fujimoto, K., Yamashita, M., Hirano, S., Kato, K. et al., “Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine,” SAE Int. J. Fuels Lubr. 7(3):869-874, 2014, doi:10.4271/2014-01-2785.
  23. Kocsis, M., Briggs, T., and Anderson, G., “The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior,” SAE Int. J. Engines 10(3):1019-1035, 2017, doi:10.4271/2017-01-0685.
  24. Ritchie, A., Boese, D., and Young, A., “Controlling Low-Speed Pre-Ignition in Modern Automotive Equipment Part 3: Identification of Key Additive Component Types and Other Lubricant Composition Effects on Low-Speed Pre-Ignition,” SAE Int. J. Engines 9(2):832-840, 2016, doi:10.4271/2016-01-0717.
  25. Magar, M., Spicher, U., Palaveev, S., Gohl, M. et al., “Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines,” SAE Int. J. Engines 8(2):495-504, 2015, doi:10.4271/2015-01-0753.
  26. Okada, Y., Miyashita, S., Izumi, Y., and Hayakawa, Y., “Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine,” SAE Int. J. Engines 7(2):584-594, 2014, doi:10.4271/2014-01-1218.
  27. Khosravi, M., Ruhland, H., Lorenz, T., and Weber, C., “Investigation into Occurrence of Megaknock and Auto-Ignition in GTDI Engines,” SAE Technical Paper 2017-01-0690, 2017, doi:10.4271/2017-01-0690.
  28. Andrews, A., Burns, R., Dougherty, R., Deckman, D. et al., “Investigation of Engine Oil Base Stock Effects on Low Speed Pre-Ignition in a Turbocharged Direct Injection SI Engine,” SAE Int. J. Fuels Lubr. 9(2):400-407, 2016, doi:10.4271/2016-01-9071.

Cited By