This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LSPI Durability, a Study of LSPI over the Life of a Vehicle

Journal Article
03-11-01-0002
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 01, 2018 by SAE International in United States
LSPI Durability, a Study of LSPI over the Life of a
                    Vehicle
Sector:
Citation: Michlberger, A. and Sutton, M., "LSPI Durability, a Study of LSPI over the Life of a Vehicle," SAE Int. J. Engines 11(1):23-38, 2018, https://doi.org/10.4271/03-11-01-0002.
Language: English

References

  1. Yabu, T., Yasuhara, S., and Kashiwagi, M., “Development of GFRTP Crush Box with Consideration of Use Environment and Effect of Fiber Orientation,” SAE Int. J. Mater. Manf. 10(2):191-197, 2017, doi:10.4271/2017-01-0498.
  2. Peckham, R., Basu, S., Ribeiro, M., and Walker, S., “Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China,” SAE Int. J. Passeng. Cars - Mech. Syst. 10(2):455-464, 2017, doi:10.4271/2017-01-1297.
  3. DeMarco, K., Stratton, J., Chinavare, K., and VanHouten, G., “The Effects of Mass and Wheel Aerodynamics on Vehicle Fuel Economy,” SAE Technical Paper 2017-01-1533, 2017, doi:10.4271/2017-01-1533.
  4. Vaidyanathan, H., Murty, P., and Eswara, S., “Hybrid Natural Fiber Composites Molded Auto-Body Panels/Skins (Hybrid NFPC): Processing, Characterization & Modeling,” SAE Technical Paper 2011-01-0219, 2011, doi:10.4271/2011-01-0219.
  5. Hakariya, M., Toda, T., and Sakai, M., “The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine,” SAE Technical Paper 2017-01-1021, 2017, doi:10.4271/2017-01-1021.
  6. Hardy, A., Heywood, J., and Kenney, T., “Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System,” SAE Int. J. Engines 1(1):1263-1277, 2009, doi:10.4271/2008-01-2512.
  7. Kleeberg, H., Tomazic, D., Dohmen, J., Wittek, K. et al., “Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System,” SAE Technical Paper 2013-01-0288, 2013, doi:10.4271/2013-01-0288.
  8. Tsuchida, H., Hiraya, K., Tanaka, D., Shigemoto, S. et al., “The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine,” SAE Technical Paper 2007-01-4004, 2007, doi:10.4271/2007-01-4004.
  9. Schoenhaber, J., Kuehn, N., Bradler, B., Richter, J. et al., “Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles,” SAE Technical Paper 2017-01-0924, 2017, doi:10.4271/2017-01-0924.
  10. Kapadia, J., Kok, D., Jennings, M., Kuang, M. et al., “Powersplit or Parallel - Selecting the Right Hybrid Architecture,” SAE Int. J. Alt. Power. 6(1):68-76, 2017, doi:10.4271/2017-01-1154.
  11. Dahnz, C., Han, K., Spicher, U., Magar, M. et al., “Investigations on Pre-Ignition in Highly Supercharged SI Engines,” SAE Int. J. Engines 3(1):214-224, 2010, doi:10.4271/2010-01-0355.
  12. Shinagawa, T., Kudo, M., Matsubara, W., and Kawai, T., “The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine,” SAE Technical Paper 2015-01-1268, 2015, doi:10.4271/2015-01-1268.
  13. Haenel, P., Kleeberg, H., de Bruijn, R., and Tomazic, D., “Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines,” SAE Int. J. Fuels Lubr. 10(1):95-105, 2017, doi:10.4271/2017-01-0687.
  14. Kuboyama, T., Moriyoshi, Y., and Morikawa, K., “Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range,” SAE Int. J. Engines 8(2):529-537, 2015, doi:10.4271/2015-01-0761.
  15. Hirano, S., Yamashita, M., Fujimoto, K., and Kato, K., “Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines (Part 2),” SAE Technical Paper 2013-01-2569, 2013, doi:10.4271/2013-01-2569.
  16. Wang, Z., Liu, H., Song, T., Xu, Y. et al., “Investigation on Pre-ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines,” SAE Technical Paper 2014-01-1212, 2014, doi:10.4271/2014-01-1212.
  17. Amann, M., Mehta, D., and Alger, T., “Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines,” SAE Int. J. Engines 4(1):274-285, 2011, doi:10.4271/2011-01-0342.
  18. Chapman, E., Davis, R., Studzinski, W., and Geng, P., “Fuel Octane and Volatility Effects on the Stochastic Pre-Ignition Behavior of a 2.0L Gasoline Turbocharged DI Engine,” SAE Int. J. Fuels Lubr. 7(2):379-389, 2014, doi:10.4271/2014-01-1226.
  19. Zahdeh, A., Rothenberger, P., Nguyen, W., Anbarasu, M. et al., “Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines,” SAE Int. J. Engines 4(1):246-273, 2011, doi:10.4271/2011-01-0340.
  20. Luo, X., Teng, H., Hu, T., Miao, R. et al., “Mitigating Intensities of Super Knocks Encountered in Highly Boosted Gasoline Direct Injection Engines,” SAE Technical Paper 2015-01-0084, 2015, doi:10.4271/2015-01-0084.
  21. Takeuchi, K., Fujimoto, K., Hirano, S., and Yamashita, M., “Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines,” SAE Int. J. Fuels Lubr. 5(3):1017-1024, 2012, doi:10.4271/2012-01-1615.
  22. Fujimoto, K., Yamashita, M., Hirano, S., Kato, K. et al., “Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine,” SAE Int. J. Fuels Lubr. 7(3):869-874, 2014, doi:10.4271/2014-01-2785.
  23. Kocsis, M., Briggs, T., and Anderson, G., “The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior,” SAE Int. J. Engines 10(3):1019-1035, 2017, doi:10.4271/2017-01-0685.
  24. Ritchie, A., Boese, D., and Young, A., “Controlling Low-Speed Pre-Ignition in Modern Automotive Equipment Part 3: Identification of Key Additive Component Types and Other Lubricant Composition Effects on Low-Speed Pre-Ignition,” SAE Int. J. Engines 9(2):832-840, 2016, doi:10.4271/2016-01-0717.
  25. Magar, M., Spicher, U., Palaveev, S., Gohl, M. et al., “Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines,” SAE Int. J. Engines 8(2):495-504, 2015, doi:10.4271/2015-01-0753.
  26. Okada, Y., Miyashita, S., Izumi, Y., and Hayakawa, Y., “Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine,” SAE Int. J. Engines 7(2):584-594, 2014, doi:10.4271/2014-01-1218.
  27. Khosravi, M., Ruhland, H., Lorenz, T., and Weber, C., “Investigation into Occurrence of Megaknock and Auto-Ignition in GTDI Engines,” SAE Technical Paper 2017-01-0690, 2017, doi:10.4271/2017-01-0690.
  28. Andrews, A., Burns, R., Dougherty, R., Deckman, D. et al., “Investigation of Engine Oil Base Stock Effects on Low Speed Pre-Ignition in a Turbocharged Direct Injection SI Engine,” SAE Int. J. Fuels Lubr. 9(2):400-407, 2016, doi:10.4271/2016-01-9071.

Cited By