This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

Journal Article
01-13-02-0012
ISSN: 1946-3855, e-ISSN: 1946-3901
Published October 19, 2020 by SAE International in United States
Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor
Sector:
Citation: Topal, A. and Turan, O., "Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor," SAE Int. J. Aerosp. 13(2):143-153, 2020, https://doi.org/10.4271/01-13-02-0012.
Language: English

Abstract:

The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer. Furthermore, experimental results gave a maximum deviation of 1.5% in the combustion efficiency using the revised correlations. Finally, in conclusion, the reaction rates are the main contributor to the inefficiency of the tubular combustor due to the high aerodynamic loads related to the combustor dimension and operating conditions.