Using Laser Diodes to Characterize Force and Pressure Sensors
TBMG-2209
01/01/2002
- Content
A proposed method of characterizing microphones and other pressure and force sensors would exploit the temporally varying forces of impingement of amplitude-modulated light beams from inexpensive laser diodes. What makes the method likely to be practical is the surprising fact that these forces, albeit small, are nevertheless large enough to enable quantification of the noise floors, sensitivities, and frequency responses of many modern pressure sensors. The time-averaged force of impingement of a pulsed beam of light on a surface is given by F = SDP/c, where S ranges from 1 for a totally absorptive (black) to 2 for a perfectly reflective surface, D is the pulse duty cycle, P is the peak power of the beam, and c is the speed of light. Hence, if one knows S, D, and P, it may be possible to determine the absolute sensitivity of the sensor. Even if one does not know one or more of these parameters, it should be possible to determine the relative sensitivities of different sensors by measuring their responses to the same modulated beam, or to determine the relative frequency response of a given sensor by measuring its output while sweeping the modulation frequency.
- Citation
- "Using Laser Diodes to Characterize Force and Pressure Sensors," Mobility Engineering, January 1, 2002.