Tissue Engineering Using Transfected Growth-Factor Genes
TBMG-180
02/01/2005
- Content
A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient’s own cells or, if not, at least cells matched to the patient’s cells according to a human-leucocyte-antigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient’s injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells.
- Citation
- "Tissue Engineering Using Transfected Growth-Factor Genes," Mobility Engineering, February 1, 2005.