Solder Bond Packaging for High-Voltage Pulsed Power Devices
TBMG-27034
06/01/2017
- Content
The huge demand for switching components exceeding silicon's (Si) current density limitation of 200 A/cm2 has pushed the enhancement of alternative semiconductor materials such as silicon carbide (SiC), gallium nitride, and diamond. The enhanced material properties of SiC, such as high thermal conductivity, large critical field, wide bandgap, large elastic modulus, and high saturation velocity, make it a viable candidate for pulsed power systems. Using SiC would increase both current and power densities, improve dI/dt and dV/dt capabilities, reduce recovery time, and minimize switching losses in various power electronic systems. Furthermore, a significant reduction in the volume and weight of pulsed power systems can be realized by implementing SiC SGTOs, reducing the thermal management requirements of the pulsed power system.
- Citation
- "Solder Bond Packaging for High-Voltage Pulsed Power Devices," Mobility Engineering, June 1, 2017.