Simulation of Arc Quenching in Hermetically Sealed Electric Vehicle Relays

WCX World Congress Experience
Authors Abstract
The goal of this work is to investigate arc quenching in electric vehicle relays using high-fidelity computational modeling. Rapid arc quenching is an essential quality of state-of-the-art high-voltage mechanical relays in electric vehicles. As a relay begins to break electrical contact, strong arcing can occur. This delays the process of sending a signal to the primary circuit breaker to isolate the load from a sudden current surge. The strength and duration of the arc have a significant impact on the safety of electric vehicles as well as on relay contactor erosion/lifetime. A thermal plasma modeling tool is used to estimate switch-off time in an arc relay using hydrogen and air as working gases. The response of arc dynamics and switch-off time to the gas composition, external magnetic field strength, and chamber pressure is studied. It was observed that a hermetically sealed chamber filled with hydrogen is significantly more efficient than air at quenching the arc. A stronger magnetic field was seen to enhance arc stretch to the wall which rapidly quenches the arc. Further, decreasing gas pressure inside the chamber yielded an increase in the time taken for the arc to quench.
Meta TagsDetails
Karpatne, A., Breden, D., and Raja, L., "Simulation of Arc Quenching in Hermetically Sealed Electric Vehicle Relays," Passenger Cars - Electronic and Electrical Systems 11(3):149-157, 2018,
Additional Details
Apr 3, 2018
Product Code
Content Type
Journal Article