SiC-Based Microstructures for Sensors
TBMG-35815
01/01/2020
- Content
Innovators at NASA's Glenn Research Center have developed ultra-thin silicon carbide (SiC) microstructures that enable highly sensitive pressure sensors that are biocompatible. The novel method of fabricating these microstructures, Dopant Selective Reactive Ion Etching (DSRIE), allows for structures as thin as 2 microns to be achieved, while allowing multifunctional sensors to be fabricated on a single SiC wafer. For the first time, it is possible to batch-fabricate ultra-thin SiC diaphragms that can sense very low pressures, enabling pressure sensors that can measure sub-psi pressures. This faster process makes it easier and less costly to produce complex, advanced semiconductors that are fully functional at temperatures greater than 600 °C. This technique enables a new generation of SiC-based microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) such as accelerometers, pressure sensors, and biosensors.
- Citation
- "SiC-Based Microstructures for Sensors," Mobility Engineering, January 1, 2020.