Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-0216
Pages
12
Citation
Neal, M., Nie, B., Xia, Y., Zhou, Q. et al., "Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations," SAE Int. J. Trans. Safety 1(2):286-296, 2013, https://doi.org/10.4271/2013-01-0216.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-0216
Content Type
Journal Article
Language
English