Polymer Electrolytes for Rechargeable Lithium Batteries
TBMG-999
12/01/2002
- Content
Polymeric electrolytes for rechargeable lithium-based electrochemical cells and batteries would be made by blending and complexing cyanoresins with lithium salts, according to a proposal. In particular, polymeric electrolytes for separators, carbon-composite anodes, and cathodes would be formulated from appropriate blends of different polymers that are mutually insoluble and do not chemically react with each other. As a result, each polymeric component would retain its specific desired characteristics in high-energy-density batteries that would be capable of long cycle lives and high charge/discharge rates. For example, one polymeric component could provide high ionic conductivity and charge-carrier concentration while another polymeric component would provide structural integrity. Conceivably, a lithium battery made with such materials could exhibit an energy density of 80 W×h/lb for more than 1,000 charge/discharge cycles. Batteries like this could be used in applications ranging from geosynchronous satellites to electric vehicles to small consumer electronic equipment.
- Citation
- "Polymer Electrolytes for Rechargeable Lithium Batteries," Mobility Engineering, December 1, 2002.