Magazine Article

Optimal Calibration of the Spitzer Space Telescope

TBMG-1128

01/01/2007

Abstract
Content

A document discusses the focal-plane calibration of the Spitzer Space Telescope by use of the instrument pointing frame (IPF) Kalman filter, which was described in "Kalman Filter for Calibrating a Telescope Focal Plane" (NPO-40798), NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 62. To recapitulate: In the IPF Kalman filter, optimal estimates of both engineering and scientific focal-plane parameters are obtained simultaneously, using data taken in each focal-plane survey activity. The IPF Kalman filter offers greater efficiency and economy, relative to prior calibration practice in which scientific and engineering parameters were estimated by separate teams of scientists and engineers and iterated upon each other. In the Spitzer Space Telescope application, the IPF Kalman filter was used to calibrate 56 frames for precise telescope pointing, estimate >1,500 parameters associated with focal-plane mapping, and process calibration runs involving as many as 1,338 scientific image centroids. The final typical survey calibration accuracy was found to be 0.09 arc second. The use of the IPF Kalman filter enabled a team of only four analysts to complete the calibration processing in three months. An unanticipated benefit afforded by the IPF Kalman filter was the ability to monitor health and diagnose performance of the entire end-to-end telescope- pointing system.

Meta TagsDetails
Citation
"Optimal Calibration of the Spitzer Space Telescope," Mobility Engineering, January 1, 2007.
Additional Details
Publisher
Published
Jan 1, 2007
Product Code
TBMG-1128
Content Type
Magazine Article
Language
English