Material Selection and Structural Optimization for Lightweight Truck Trailer Design

Features
Authors Abstract
Content
This article investigates options for lightweighting truck trailers through a combination of material selection and structural optimization. Critical chassis design load cases were established and a parametric finite element (FE) model of a typical European-style 13.5 m long truck trailer built from steel I-beams was developed. The model has been used to show that existing longitudinal steel I-beams could be reduced in weight by 28% (140 kg) through shape optimization alone. The model was expanded to analyze holistic composite trailer structures. It showed that up to 67% (1,326 kg) of weight could be saved by executing shape and material optimization in unison. The approach highlights that design through parametric analysis allows for many different structural configurations to be assessed in terms of both mechanical performance and material cost. This facilitates the construction of a theoretical design space of a lightweight chassis, clarifying the weight reduction limits that could be achieved with lightweight materials and structural optimization. The lightweight trailer chassis designs proposed here are also compared against a portfolio of shorter-term strategies for trailer lightweighting. These strategies are poised to have an increasingly important role in reducing the greenhouse gas emissions of the road freight industry.
Meta TagsDetails
DOI
https://doi.org/10.4271/02-12-04-0022
Pages
18
Citation
Galos, J., and Sutcliffe, M., "Material Selection and Structural Optimization for Lightweight Truck Trailer Design," Commercial Vehicles 12(4):281-297, 2019, https://doi.org/10.4271/02-12-04-0022.
Additional Details
Publisher
Published
Feb 18, 2020
Product Code
02-12-04-0022
Content Type
Journal Article
Language
English