Lightweight Mirrors for Orbiting Earth-Observing Instruments

TBMG-1038

12/01/2002

Abstract
Content

A report discusses selected aspects of a continuing program to develop thermally stable, lightweight mirrors for planned Earth-observing spaceborne instruments. These mirrors are required to retain precise concave or convex surface figures required for diffraction-limited optical performance, even in the presence of transient, asymmetric thermal loads, which include solar heating and radiational cooling. In the first phase of the program, preliminary analyses were performed to select one of three types of mirror structures: one made of SiC, one made of Be, and a hybrid comprising a lightweight composite-material substructure supporting a glass face sheet that would be a substrate for the required precise optical surface. The hybrid structure was selected for further development because it would offer a combination of high stiffness and low mass and because, relative to the Be and SiC structures, (1) the coefficients of thermal expansion of its constituent materials and the resulting wavefront error would be smaller, and (2) it could be fabricated at lower cost. A prototype hybrid structure with an aperture diameter of 0.3 m was fabricated. Planned efforts in the next phase of the program include optical polishing of the glass face sheet and testing.

Meta TagsDetails
Citation
"Lightweight Mirrors for Orbiting Earth-Observing Instruments," Mobility Engineering, December 1, 2002.
Additional Details
Publisher
Published
Dec 1, 2002
Product Code
TBMG-1038
Content Type
Magazine Article
Language
English