Increasing Discharge Capacities of Li-(CF)n Cells
TBMG-2608
02/01/2008
- Content
An electrolyte additive has shown promise as a means of increasing the sustainable rates of discharge and, hence, the discharge capacities, of lithium- poly (carbon monofluoride) electrochemical power cells. Lithium- poly (carbon monofluoride) [Li-(CF)n] cells and batteries offer very high specific energies — practical values of about 600 W.h/g and a theoretical maximum value of 2,180 W·h/kg. However, because Li-(CF)n cells and batteries cannot withstand discharge at high rates, they have been relegated to niche applications that involve very low discharge currents over times of the order of hundreds to thousands of hours. Increasing the discharge capacities of Li- (CF)n batteries while maintaining high practical levels of specific energy would open new applications for these batteries.
- Citation
- "Increasing Discharge Capacities of Li-(CF)n Cells," Mobility Engineering, February 1, 2008.