Fabricating Radial Groove Gratings Using Projection Photolithography

TBMG-6364

12/01/2009

Abstract
Content

Projection photolithography has been used as a fabrication method for radial grove gratings. Use of photolithographic method for diffraction grating fabrication represents the most significant breakthrough in grating technology in the last 60 years, since the introduction of holographic written gratings. Unlike traditional methods utilized for grating fabrication, this method has the advantage of producing complex diffractive groove contours that can be designed at pixel-by-pixel level, with pixel size currently at the level of 45×45 nm. Typical placement accuracy of the grating pixels is 10 nm over 30 nm. It is far superior to holographic, mechanically ruled or direct e-beam written gratings and results in high spatial coherence and low spectral cross-talk. Due to the smooth surface produced by reactive ion etch, such gratings have a low level of randomly scattered light. Also, due to high fidelity and good surface roughness, this method is ideally suited for fabrication of radial groove gratings. The projection mask is created using a laser writer. A single crystal silicon wafer is coated with photoresist, and then the projection mask, with its layer of photoresist, is exposed for patterning in a stepper or scanner. To develop the photoresist, the fabricator either removes the exposed areas (positive resist) of the unexposed areas (negative resist). Next, the patterned and developed photoresist silicon substrate is subjected to reactive ion etching. After this step, the substrate is cleaned. The projection mask is fabricated according to electronic design files that may be generated in GDS file format using any suitable CAD (computer-aided design) or other software program.

Meta TagsDetails
Citation
"Fabricating Radial Groove Gratings Using Projection Photolithography," Mobility Engineering, December 1, 2009.
Additional Details
Publisher
Published
Dec 1, 2009
Product Code
TBMG-6364
Content Type
Magazine Article
Language
English