A heat pipe is a self-operating device which is capable of transferring large amounts of heat with a minimum temperature differences between the hot end (evaporator) and the cold end (condenser). However, a limited number of research work or analysis [1,2,3,4,5,6,7,8,9] has been reported in automotive industry on the applications of heat pipes in power train cooling. The advantage of a heat pipe heat exchanger is the possibility to use a more compact and lighter radiator. In addition, the proposed radiator is expected to be more robust as it is less sensitive to variations in ambient temperatures. In this paper, a proposed design for an automotive heat exchanger is investigated. The proposed design is evaluated through thermal simulation of heat pipes using various design parameters. The analysis addresses the ability of the heat exchanger to maintain engine coolant temperature at acceptable limits under different loading conditions.