Effect of Temperature and Frequency on the Viscoelastic Behavior of Commercial 6082 (Al–Mg–Si) Alloy

Features
Authors Abstract
Content
The viscoelastic response of pure Al and commercial 6082 and 6082-T6 (Al–Mg–Si) alloys is measured with dynamic–mechanical analyzer as a function of temperature (ranging from 35 to 425°C) and loading frequency (ranging from 0.01 to 100 Hz). The measured data (the storage modulus, loss modulus, and mechanical damping) are compared to available transmission electron microscopy and differential scanning calorimetry data, to ascertain whether unexplained variations of the viscoelastic behavior of the alloys can be correlated to phase transformations. The results suggest that some of these variations may be controlled by the formation and dissolution of metastable phases, such as Guinier–Preston (GP) zones and phases β″, β′, and B′. Indeed, GP zones and phase β″ have been reported to control other mechanical properties. However, due to the high complexity of the aging path of Al–Mg–Si alloys, with formation and dissolution reactions of many precipitate types overlapping along wide temperature intervals, further research is necessary to establish unequivocally the contribution of each individual phase transformation to the overall viscoelastic behavior. Finally, an internal friction peak related to grain boundary sliding is significantly smaller in the alloys compared to pure Al, probably because the precipitates pin the grain boundaries.
Meta TagsDetails
DOI
https://doi.org/10.4271/05-17-04-0028
Pages
13
Citation
Rojas, J., Contel, A., and Crespo, D., "Effect of Temperature and Frequency on the Viscoelastic Behavior of Commercial 6082 (Al–Mg–Si) Alloy," SAE Int. J. Mater. Manf. 17(4):385-397, 2024, https://doi.org/10.4271/05-17-04-0028.
Additional Details
Publisher
Published
Jul 13
Product Code
05-17-04-0028
Content Type
Journal Article
Language
English