Carbon-Nanotube-Carpet Heat-Transfer Pads
TBMG-1279
12/01/2006
- Content
Microscopic thermal-contact pads that include carpetlike arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable.
- Citation
- "Carbon-Nanotube-Carpet Heat-Transfer Pads," Mobility Engineering, December 1, 2006.