An Automated Model Based Design Flow for the Design of Robust FlexRay™ Networks

Event
SAE World Congress & Exhibition
Authors Abstract
Content
The enormous increase of vehicle functions realized through electronic components significantly impacts the communication within the vehicle network. More functions are requesting higher bandwidth; safety applications require a deterministic communication scheme to ensure reliable system performance even under harsh real world conditions. The new FlexRay vehicle communication standard addresses these requirements, with production networks already on the road. The high transmission rate introduces new challenges for network developers dealing with the implementation of the electrical physical layer as the dynamic behavior of the system cannot be predicted using manual calculations. The FlexRay physical layer working group has therefore established a simulation task force dealing with issues related to FlexRay's physical layer implementation. This task force has developed a virtual prototype based methodology to give network developers early verification of FlexRay physical layer implementations. Topology variants that depend on equipment in the vehicle can be investigated quickly with regard to their robustness under nominal and even worst case conditions. This paper introduces an automated, simulation-based methodology based on the guidelines and criteria defined in the FlexRay physical layer specification. In addition, this paper shows how close OEMs, IC vendors, conformance testers and software tool vendors must work together to define and realize a robust design methodology that is based on a virtual prototype implementation of the FlexRay network.
Meta TagsDetails
DOI
https://doi.org/10.4271/2008-01-1031
Pages
10
Citation
Bollati, D., and Gerke, T., "An Automated Model Based Design Flow for the Design of Robust FlexRay™ Networks," SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 1(1):457-466, 2009, https://doi.org/10.4271/2008-01-1031.
Additional Details
Publisher
Published
Apr 14, 2008
Product Code
2008-01-1031
Content Type
Journal Article
Language
English