Anion-IntercalatingCathodes for High-Energy-Density Cells
TBMG-33
09/01/2006
- Content
A report discusses physicochemical issues affecting a fluoride-intercalating cathode that operates in conjunction with a lithium ion-intercalating anode in a rechargeable electrochemical cell described in a cited prior report. The instant report also discusses corresponding innovations made in solvent and electrolyte compositions since the prior report. The advantages of this cell, relative to other lithium-ion-based cells, are said to be greater potential (5 V vs. 4 V), and greater theoretical cathode specific capacity (0.9 to 2.2 A-h/g vs. about 0.18A-h/g). The discussion addresses a need for the solvent to be unreactive toward the lithium anode and to resist anodicoxidation at potentials greater than about 4.5 V vs. lithium; the pertinent innovation is the selection of propylene carbonate (PC) as a solvent having significantly more stability, relative to other solvents that have been tried. The discussion also addresses the need for an electrolyte additive, denoted an anion receptor, to complex the fluoride ion; the pertinent innovation is the selection of tris(hexafluoroisopropyl) borate as a superior alternative to the prior anion receptor, which was tris(pentafluorophenyl) borate.
- Citation
- "Anion-IntercalatingCathodes for High-Energy-Density Cells," Mobility Engineering, September 1, 2006.