Your Selections

Reaction and response times
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of low cost life saving system for Automotive vehicles during Road Accidents.

Tata Technologies, Ltd.-Sachin Madhukarrao Pajgade, Aashish Bhargava
  • Technical Paper
  • 2019-28-2460
To be published on 2019-11-21 by SAE International in United States
According to research study 45% of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also loose the power to fight such critical situation due to psychological effect. When vehicle met accident, people are not getting on time support, this delay is the major cause of death in developing nations. Presently there is no any robust system available in market for passenger & commercial vehicles which helps to provide on time help to the injured persons & saves human life. In current situation low cost life saving device is need of our society. This paper deals with the design & development of the low cost-life saving device. This paper also comprises the scenario when any vehicle meet an accidents within certain speed limit then how the intelligent life saving device will work & save the life's. Further it explains the type of life saving device design, logical programming and system packaging. The system has been…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

SRM Institute of Science and Technology-Nanthakumar Ajd, Pranav Suresh, Shubham Subhnil, Vasanthkumar CH
  • Technical Paper
  • 2019-28-2400
To be published on 2019-11-21 by SAE International in United States
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB. The static testing of the chassis is carried over using a Kinematic & Compliance (K & C) testing rig to get Compliance Budget and hence the calculated…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

HANDLING EXCEPTIONAL SITUATION OF AN AUTONOMOUS VEHICLE

General Motors Technical Center India-Balasab Kardegouda
  • Technical Paper
  • 2019-28-2526
To be published on 2019-11-21 by SAE International in United States
In autonomous vehicle world human safety takes highest priority. And most researchers agree that machines won't be able to completely take over driving duties for years or even decades. "Today's autonomous vehicles can drive relatively well in typical settings, but they fail in exceptional situations - and it's those situations that are the most dangerous," said Walter Lasecki, an assistant professor of computer science and engineering. "Designing autonomous systems that can handle those exceptional situations could take decades, and in the meantime, we're going to need something to fill the gap. Few companies have introduced human safety drivers in autonomous vehicles which has cost advantage compared to traditional ride sharing services. Combining human and artificial intelligence in autonomous vehicles could push driverless cars more quickly toward wide - scale adoption. The aim of this paper is to showcase serial data architecture of high speed data transfer of critical predicted vehicle data of an exceptional situations, both onboard and offboard. This data shall be used for instantaneous analysis and decision making during exceptional situations. According to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Electronic Travelling Kit for Navigation of Visually Challenged Individuals

SRM Institute of Science and Technology-Rajarajeswari Rathinam, Suchitra Dayalan, Harris Mathews
Published 2019-10-11 by SAE International in United States
Navigation of visually challenged persons is found tough, as they frequently do not get the essential details for escaping the perils and risk they come across when they want to reach a destination. Modernization of the world leads to the usage of technologically equipped devices to make compact and cost-effective setup. In order to help the visually impaired person to navigate securely swiftly an impediment identification system employing techno equipment such as Ultrasonic Sensors (US) and Universal Serial camera-based visual navigation system is proposed. The proposed framework identifies obstruction via the US and transmits audio signals as feedback to guide the individual about the location to be reached. Moreover, for capturing the location where the person has to move a universal serial bus (USB) webcam is employed. USB webcam is also deployed to distinguish between a human and an obstacle. In order to identify the persons well known to the visually challenged and also the presence of other human movements a face recognition system using image processing is adopted in the proposed system. The General…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

Clemson University-Rohit Koli, Daniel Egan, Qilun Zhu, Robert Prucka
  • Technical Paper
  • 2019-24-0014
Published 2019-09-09 by SAE International in United States
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology. Online linearization of the engine model is computationally expensive so it should be performed as infrequently as possible. Since engine dynamics are non-linear, a local linearity approximation error occurs during this process. This research presents a method of evaluating the impact of local linear approximation…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optimal Engine Re-Start Strategy on a Mild Hybrid Powertrain by Means of Up-Front Modelling

Ford Werke GmbH-Harald Stoffels, Shan-An Kao, Michael Frenken
Published 2019-09-09 by SAE International in United States
The ability to switch off the internal combustion engine (ICE) during vehicle operation is a key functionality in hybrid powertrains to achieve low fuel economy. However, this can affect driveability, namely acceleration response when an ICE re-engagement due to a driver initiated torque demand is required. The ICE re-start as well as the speed and load synchronisation with the driveline and corresponding vehicle speed can lead to high response times. To avoid this issue, the operational range where the ICE can be switched off is often compromised, in turn sacrificing fuel economy. Based on a 48V off-axis P2 hybrid powertrain comprising a lay-shaft transmission we present an up-front simulation methodology that considers the relevant parameters of the ICE like air-path, turbocharger, friction, as well as the relevant mechanical and electrical parameters on the hybrid drive side, including a simplified multi-body approach to reflect the relevant vehicle and powertrain dynamics. Applying different ICE re-start strategies at different speeds and gears, the driveability of the ICE re-engagement was evaluated using a commercialized driveability evaluation tool. Subjective ratings,…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Study on Combustion Characteristics of a High Compression Ratio SI Engine with High Pressure Gasoline Injection

Mazda Motor Corp-Takashi Youso, Tatsuya Fujikawa, Masahisa Yamakawa
Waseda Univ-Takashi Kaminaga, Kyohei Yamaguchi, Sok Ratnak, Jin Kusaka
Published 2019-09-09 by SAE International in United States
In order to improve thermal efficiency of spark ignition (SI) engines, an improved technology to avoid irregular combustion under high load conditions of high compression ratio SI engines is required. In this study, the authors focused on high pressure gasoline direct injection in a high compression ratio SI engine, which its rapid air-fuel mixture formation, turbulence, and flame speed, are enhanced by high-speed fuel spray jet. Effects of fuel injection pressure, injection and spark ignition timing on combustion characteristics were experimentally and numerically investigated. It was found that the heat release rate was drastically increased by raising the fuel injection pressure. The numerical simulation results show that the high pressure gasoline direct injection enhanced small-scale turbulent intensity and fuel evaporation, simultaneously. These two effects were considered as the main factors to increase the flame propagation speed, suggesting a new combustion concept different from conventional SI combustion controlled by in-cylinder bulk flow. This combustion method enables the delay of fuel injection and spark ignition timing up to near top dead center (TDC) which leads to avoid…
This content contains downloadable datasets
Annotation ability available

Fiber-Based Artificial Muscles

  • Magazine Article
  • TBMG-35132
Published 2019-09-01 by Tech Briefs Media Group in United States

While different approaches have been used to create artificial muscles — including hydraulic systems, servomotors, shape-memory metals, and polymers that respond to stimuli — they all have limitations such as high weight or slow response times. A fiber-based system was developed that is extremely lightweight and can respond very quickly.

Factors Affecting the Severity of Motor Vehicle Traffic Crashes in Tunisia

SAE International Journal of Transportation Safety

Najran University, Saudi Arabia-Mounir Belloumi
University of Sousse, Tunisia-Fedy Ouni
  • Journal Article
  • 09-07-01-0006
Published 2019-08-19 by SAE International in United States
We investigate the contribution of several variables concerning the severity of accidents involving vehicle occupant and pedestrian victims in Tunisia. In order to investigate the effect of various explanatory variables, Odds Ratio (OR) effects are considered for both serious injury accidents and fatal accidents. The empirical results are of great variety. The vehicle-occupant severity model indicates that male drivers are associated with higher severity levels as compared to female drivers. Added to that, accidents occurring in rainy conditions increase the likelihood of fatal injuries but have no significant effect on other injury severity levels. Among driver contributory factors, a driver under the influence of alcohol or drug is associated with an increased risk of sustaining fatal injuries compared to other driver contributory factors. The season factor shows that accident severity during the summer season is high. Among time of accident, daytime periods indicate a high likelihood of severe injuries as compared to nighttime periods. Another finding of the study is that the day of accident and region of accident increases the probability of severe injury.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Prediction and Control of Response Time of the Semitrailer Air Braking System

SAE International Journal of Commercial Vehicles

Jiangsu University, China-Ren He, Chang Xu
  • Journal Article
  • 02-12-02-0011
Published 2019-05-09 by SAE International in United States
The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time. As a result, a braking pressure compensation system was designed through adding intake and exhaust solenoid valves to the original braking system. A proportional-integral-derivative (PID) control strategy optimized by genetic algorithm (GA) was adopted to generate pulse width modulation (PWM) signals applied to the solenoid valves…
This content contains downloadable datasets
Annotation ability available