The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Powertrains
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Reverse Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

FEV Group GmbH-Alessandro Perazzo
Politecnico di Torino-Enrico Galvagno, Federico Millo, Giuseppe DiPierro, Mauro Velardocchia, Gianluca Mari
  • Technical Paper
  • 2020-37-0021
To be published on 2020-06-23 by SAE International in United States
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant but unknown powertrain data required for fuel consumption-oriented hybrid electric vehicle modelling. The main estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency maps, torque converter and lock-up clutch operating maps, internal combustion engine and electric motor mass moment of inertia, and finally front/rear brake torque distribution. This activity introduces a list of limited and dedicated experimental tests, carried out both on road and on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm. In this regard, the methodology was tested on a P2 architecture Diesel Plug-in HEV equipped with a 9-speed AT. voltage and current sensors are used to measure the electrical power exchanged…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simplified Cost-effective Aftertreatment System for Electrified Diesel Applications

Exothermia SA-Dimitrios Karamitros, Christos Avgerinos, Stavros Skarlis, Grigorios Koltsakis
GM Global Propulsion System-Giuseppe Previtero, Fransesco Bechis
  • Technical Paper
  • 2020-37-0023
To be published on 2020-06-23 by SAE International in United States
The Diesel powertrain remains an important CO2 reduction technology in specific market segments due to its inherent thermodynamic combustion efficiency advantages. Diesel powertrain hybridization can bring further potential for CO2 emissions reduction. However, the associated reduction in the exhaust gas temperature may negatively impact the performance of the exhaust aftertreatment (EAT) system and challenge the abatement of other emissions, especially NOx. Considering that active urea-SCR systems may be required to ensure compliance with the legislative limits, the total cost of the hybrid Diesel powertrain is expected to increase even more, therefore making it less commercially attractive. We present a model-based analysis of a 48V Diesel mild hybrid electric vehicle (MHEV) which is combined with an exhaust aftertreatment (EAT) system using Lean-NOx trap (LNT) technology. The overall de-NOx performance is further enhanced with the addition of passive SCR catalysts to benefit from the on-board ammonia formation during rich combustion events. Since the modeling framework is fully physico-chemically informed, it allows the investigation of various topologies, catalyst geometrical and chemical properties. Moreover, the model includes a simplified…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Diagnostic Technology of Powertrain Parts that Cause Abnormal Noises using Artificial Intelligence

Hanyang University-Kyoungjin Noh, Joon-Hyuk Chang
Hyundai Motor Company-Insoo Jung, Dongchul Lee, Dongkyu Yoo, Kibeen Lim
  • Technical Paper
  • 2020-01-1565
To be published on 2020-06-03 by SAE International in United States
In general, when a problem occurs in a component, various phenomena appear, and abnormal noise is one of them. The service technicians diagnose the noise through the analysis using hearing and equipment. Depending on their experiences, the analysis time and diagnosis accuracy vary widely. The newly developed AI-based diagnostic technology diagnoses parts that cause abnormal noises within seconds when a noise is input to the equipment. To create a learning model for diagnosis, we collected as many abnormal noises as possible from various parts, and selected good and bad data. This process is very important in the development of diagnostic techniques. Artificial intelligence was learned by deep learning with selected good data. This paper is about the technology that can diagnose the abnormal noises generated from the engine, transmission, drivetrain and PE (Power Electric) parts of the eco-friendly vehicle through the diagnosis model composed of various methods of deep learning.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

How Can Active Exhaust Systems Contribute to the Reduction of CO2 Emission and Comply with Future Pass-by Noise Limits?

Eberspaecher Exhaust Technology GmbH-Jan Krueger, Peter Wink, Maike Werner
  • Technical Paper
  • 2020-01-1534
To be published on 2020-06-03 by SAE International in United States
The pass-by noise limits of passenger vehicles according to ISO 362 / R51.3 will be further reduced by 2 dB in 2024 in Europe. Since the pass-by noise is substantially influenced by exhaust noise, the effort for the exhaust system needs to be increased. This results in systems with larger mufflers or higher backpressure. However, the more stringent CO2-emission targets require ever more efficient powertrains, which calls for rather lower backpressure to optimize the engine design. This paper describes, how compact active exhaust lines can support a design for low backpressure and high acoustic attenuation at the same time. For two passenger vehicle with gasoline engines, active exhaust lines are investigated in detail and the results are compared to the series production exhaust lines. Thus, in one exemplary case, the pass-by noise of a limousine could be reduced from 70 dB(A) to 68 dB(A) without any change in the vehicle design except the improved exhaust system.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The In-Depth PHEV Driveline Torsional Vibration Induced Vehicle NVH Response Study by Integrated CAE/Testing Methodology

BAIC Motor Powertrain Co Ltd-Hongzhi Yu, Shouwei lu
BAIC Motor corporation.Ltd.-Qian zhao, Li zhang, Jianning jia, LIE WU, Huimin zhuang, honghui zhao
  • Technical Paper
  • 2020-01-1507
To be published on 2020-06-03 by SAE International in United States
In this paper,an amesim 1-d refined driveline model, including detailed engine, damper, dual clutch, transmission, differential, motor, halfshaft, wheel, body, suspension, powertrain mounting and powertrain rigid body, was built up, off a p2.5 topology phev,to predict torsional vibration induced vehicle NVH response addressing differing driving scenarios,like WOT rampup,parking engine start/stop,ev driving to tipnin(engine start) then to tipout(engine stop).firstly,the torsional vibration modes were predicted,addressing differing transmission gear steps of hev/ev driving mode,and the critical modes could be detected,as such, caveats/measures could be applied to setup the modal alignment chart/warn other engineering section from the very start of vehicle development; secondly,secondly,the holistic operational testing,which defined plenty measurement points including rpm fluctuation at differing location of engine/transmission,spark angle,crank position,injection angle,valve timing,MAP/MAF,etc, partly for later model calibration,partly for extract mandatory excitation input,like cylinder pressure trace/mount and suspension force,and partly for the reference of next optimization stage, was implemented on vehicle chassis dyno in a hemi-anechoic chamber.as it was merely centered on torsional vibration induced scenarios,the intake system/exhaust system /engine radiation noise contribution was excluded by specific measures,like BAM,etc, during…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Using Statistical Energy Analysis to Optimize Sound Package for Realistic Load Cases

Audi AG-Christian März, Matej Glavac
ESI GmbH-Arnaud Caillet, Oussama Fatmi
  • Technical Paper
  • 2020-01-1525
To be published on 2020-06-03 by SAE International in United States
The statistical energy analysis (SEA) is widely used to support the development of the sound package of cars. This paper will present a model prepared to investigate the sound package of the new Audi A3 and its correlation against measurements. Special care was given during the creation of the model on the representation of the structure to able the analysis of structure borne energy flow on top of the classical airborne analysis usually done with SEA. The sound package is also detailed in the model to allow further optimization and analysis of its performance. Two real life load cases will be presented to validate the model with measurements. First, the dominating powertrain and second, a case with dominating rolling noise. An analysis of the contribution of the different source components and a way to diagnose the weak paths of the vehicle will be presented. The focus of this investigation is the application of optimally adjusted treatment.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Management and Performance Characteristic of Electric Vehicle

Tata Motors Ltd-Sanjoy Biswas, Asmita Ghate
  • Technical Paper
  • 2020-28-0022
To be published on 2020-04-30 by SAE International in United States
Thermal Management System is one of key parallel branch for internal combustion engine (ICE) vehicle over 4 decades as it ensures performance of power train/engine or after treatment system or HVAC (Climate control). In automotive industry, Range Anxiety and safety of Electric Vehicle (EV) are the hot topic of discussion. This paper is dealing with some importance aspects of thermal management system and their link with the performance/Safety Parameter of Electric vehicle. Battery Cooling or Battery thermal management System (BTMS or BCS) and Traction cooling system (TCS) are coupled with near conventional HVAC circuit. BTMS plays important role to ensure performance of Li-ion Battery pack which is indirectly related with Range and safety of electric vehicle. Similar, other 2 Cooling circuit has major role to ensure vehicle performance and comfort. Here, Thermal management system become utmost important to overcome the challenge of range and safety concern of EV along with many other factors. Also, Thermal management system sited in key research arena along with battery technology for Electric and Hybrid Electric Vehicle.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Variable Geometry Fin in Automotive Condenser using Analytical and CFD Approach

Mahindra & Mahindra, Ltd.-Ram Anandan
  • Technical Paper
  • 2020-28-0028
To be published on 2020-04-30 by SAE International in United States
Due to stiff competition among the Original Equipment Manufacturer (OEM's), the Comfort, Fuel efficiency & Safety are the key factors that drive the vehicle business, from that context Air Conditioning for a car plays a pivotal role in the area of comfort of the passengers and fuel efficiency point of view. In addition, condenser plays a pivotal role in Power train cooling system & air conditioning system. Therefore, it is a big challenge for the automotive engineer to propose an innovative design that can improve the thermal performance of Condenser without not compromise the package size. Also, it's a challenge for the OEM's to select the optimal heat exchanger from the supplier basket during the design phase of product development cycle. The objective of this paper to focus on analytical calculation or frame work was developed using excel tool considering the variable geometry of fin which includes louver pitch, louver angle and louver length in a multi-pass condenser. Further this theoretical calculation was validated using experimental data and CFD simulation. This theoretical excel tool can…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Modeling of DC/AC Inverter for Electrified Powertrain Systems

FCA US LLC-Meng Li, Bruce Geist
Gotion, Inc.-Fan He
  • Technical Paper
  • 2020-01-1384
To be published on 2020-04-14 by SAE International in United States
A DC-to-AC main Power Inverter Module (PIM) is one of the key components in electrified powertrain systems. Accurate thermal modeling and temperature prediction of a PIM is critical to the design, analysis, and control of a cooling system within an electrified vehicle. PIM heat generation is a function of the electric loading applied to the chips and the limited heat dissipation within what is typically compact packaging of the Insulated Gate Bipolar Transistor (IGBT) module inside the PIM. This work presents a thermal modeling approach for a 3-phase DC/AC PIM that is part of an automotive electrified powertrain system. Heat generation of the IGBT/diode pairs under electric load is modeled by a set of formulae capturing both the static and dynamic losses of the chips in the IGBT module. A thermal model of the IGBT module with a simplified liquid cooling system generates temperature estimates for the PIM. Temperatures of chips, baseplates, and sinks are predicted from electric input loads. A case study is provided in wh ich the PIM thermal model is coupled with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hybrid Powertrain Choices for Emerging Engine Technologies

Aramco Research Center-Vincent Costanzo
Argonne National Laboratory-Ram Vijayagopal, Daniela Nieto Prada
  • Technical Paper
  • 2020-01-0440
To be published on 2020-04-14 by SAE International in United States
US department of energy estimates the peak efficiency of a modern spark ignited naturally aspirated Otto cycle engine to be 36%. Atkinson cycle engines are estimated to get 40% peak efficiency. Most engines can achieve this peak efficiency only for a limited operating region. Hybrid powertrains enable engine to operate in this efficiently. Overall efficiency is improved by shutting down engine during idle events and by adjusting the operating speed and load on the engine using electric machines. The choice of the powertrain and component sizes depends on the engine characteristics, drive cycles and vehicle technical requirements. This study examines what type of powertrains will be suitable for more efficient engines that are likely to be available in the near future. Some of these technologies achieve higher efficiency with a trade off on power or by accepting a more restrictive operating region. An appropriate powertrain choice can still enable such an engine to be a viable option for an automobile. Using simulation tools, 14 different engine technologies are evaluated in this paper for their fuel…