This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
In-Use Compliance Opportunity for Diesel Powertrains
Technical Paper
2018-01-0877
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains. The core of the discussion will be focused on identifying opportunities in engine and aftertreatment hardware and controls to position the diesel applications appropriately for future in-use compliance. Additionally, the authors will discuss the potential diesel powertrain hardware enhancements that could deliver improved emissions robustness while saving fuel, in real-world operation. Since OBD has become an integral part of in-use compliance, this paper will present novel ways to address the malfunction detection with reduced margin of variance while still delivering robust separation between worst performing acceptable (WPA) and best performing unacceptable (BPU) components. In conclusion, a summary of road maps to position diesel technology for future compliance targets will be presented.
Recommended Content
Authors
- Karthik Vakiti - FEV North America Inc.
- Joel Deussen - FEV North America Inc.
- Claude Pilger - FEV North America Inc.
- Harsha K. Nanjundaswamy - FEV North America Inc.
- Tamas Szailer - FEV North America Inc.
- Michael Franke - FEV North America Inc.
- Dean Tomazic - FEV North America Inc.
- Korfer Thomas - FEV GmbH
- Marcel Romijn - FEV Europe GmbH
- Kai Deppenkemper - RWTH Aachen University
- Giovanni Vagnoni - RWTH Aachen University
Topic
Citation
Vakiti, K., Deussen, J., Pilger, C., Nanjundaswamy, H. et al., "In-Use Compliance Opportunity for Diesel Powertrains," SAE Technical Paper 2018-01-0877, 2018, https://doi.org/10.4271/2018-01-0877.Also In
References
- Singh , G. , Breton , L. , Gravel , R. , Howden , K. Overview of the VTO Advanced Combustion Engine R&D Program https://energy.gov/sites/prod/files/2016/06/f32/ace000_singh_2016_o_web.pdf 2016
- EPA Certified Vehicle Test Result Report Data https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-and-engines 2017
- Nanjundaswamy , H. , Deussen , J. , Van Sickle , R. , Tomazic , D. et al. OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts SAE Int. J. Passeng. Cars - Mech. Syst. 8 1 37 45 2015 10.4271/2015-01-1040
- Shinohara , Y. , Takeuchi , K. , Herrmann , E. , Laumen , J. Optimized Mixture Formation through Innovative Injection Technology https://www.scribd.com/document/62770718/54417963-MTZ-Worldwide-Jan-2011 2011
- Jörg , C. , Zubel , M. , Neumann , D. et al. Digital Combustion Rate Shaping Control as a Tool to Identify Modern Fuel Injection Strategies 26th Aachen Colloquium Automobile and Engine Technology 2017
- Maunula , T. NO x Reduction with the Combinations on LNT and SCR in Diesel Applications SAE Int. J. Mater. Manf. 7 1 195 206 2014 10.4271/2013-24-0161
- De Ojeda , W. Effect of Variable Valve Timing on Diesel Combustion Characteristics SAE Tech. Paper 2010-01-1124 2010 10.4271/2010-01-1124
- Deng , J. and Stobart , R. BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine SAE Tech. Paper 2009-01-1525 2009 10.4271/2009-01-1525
- Miwa , J. , Mehta , D. , and Koci , C. Evaluation of Cold Start Technologies on a 3L Diesel Engine SAE Tech. Paper 2016-01-0823 2016 10.4271/2016-01-0823
- Divekar , P. , Ayalew , B. , and Prucka , R. Coordinated Electric Supercharging and Turbo-Generation for a Diesel Engine SAE Tech. Paper 2010-01-1228 2010 10.4271/2010-01-1228
- Kim , C. , Paratore , M. , Gonze , E. , Solbrig , C. et al. Electrically Heated Catalysts for Cold-Start Emissions in Diesel After treatment SAE Tech. Paper 2012-01-1092 2012 10.4271/2012-01-1092
- Miyaura , T. , Morikawa , A. , Ito , Y. , Ishizuka , K. et al. Development of Diesel Engine Using New Fuel Injection System - Direct Monitoring of Fuel Injection Pressure Using Injector with Built-in Sensor, and its Applications SAE Technical Paper 2013-01-1739 2013 10.4271/2013-01-1739
- Rueger , J.-J. Clean Diesel - Real Life Fuel Economy and Environmental Performance Presentation at SAE 2008 Government and Industry Meeting 2008
- Tate , E.D. , Harpster , M.O. , and Savagian , P.J. The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 1 1 156 166 2008
- Chilumukuru , K. , Gupta , A. , Ruth , M. , Cunningham , M. et al. Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations SAE Int. J. of Eng. 10 4 2017 10.4271/2017-01-0911
- Neely , G. , Mehta , D. , and Sarlashkar , J. Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2 SAE Int. J. of Eng. 7 3 1302 1310 2014 10.4271/2014-01-1552