Results
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
This SAE Aerospace Recommended Practice (ARP) discusses the desired characteristics of night vision goggle (NVG) filters that can be used with incandescent, electroluminescent (EL) and light emitting diode (LED) light sources to achieve NVG compatible lighting of aerospace crew stations. This document also discusses the parameters that need to be considered when selecting a night vision goggle/daylight viewing (NVG/DV) filter for proper contrast enhancement to achieve readability in daylight. The recommendations set forth in this document are to aid in the design of NVG compatible lighting that will meet the requirements of MIL-L-85762A and MIL-STD-3009.
This specification covers a solvent-based compound in the form of a liquid.
This specification covers an aluminum alloy in the form of investment castings (see 8.6).
This SAE Standard covers low voltage primary cable intended for use at a nominal system voltage of 60 VDC (25 VAC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
This specification covers an aluminum alloy in the form of castings.
This Standard specifies the test methods, dimensions, and requirements for single-core 60 V cables intended for use in road vehicle applications where the nominal system voltage ≤ 60 V DC (25 V AC). It also specifies additional test methods and/or requirements for 600 V cables intended for use in road vehicle applications where the nominal system voltage is > 60 V DC (25 V AC) to ≤ 600 V DC (600 V AC). Where practical, this standard uses ISO 6722 for test methods, dimensions, and requirements. This standard covers ISO conductor sizes which usually differ from SAE conductor sizes. It also covers the individual cores in multi-core cables. See ISO 6722 for “Temperature Class Ratings”.
This document covers cable, shielded and jacketed, intended for use at a nominal system voltage up to 1000 V (AC rms or DC). It is intended for use in surface vehicle electrical systems.
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
This standard covers ultra-thin wall low voltage primary cable intended for use at a nominal system voltage of 60 VDC (60 VAC rms) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse. This standard covers SAE conductor sizes which usually differ from ISO conductor sizes.
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On-and OffRoad Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation. Although devices may be
Since it is impossible to be all inclusive and cover every aspect of the design/validation process, this document can be used as a basis for preparation of a more comprehensive and detailed plan that reflects the accumulated “lessons learned” at a particular company. The following areas are addressed in this document: 1 Contemporary perspective including common validation issues and flaws. 2 A Robustness validation (RV) process based on SAE J1211 handbook and SAE J2628. 3 Design checklists to aid in such a RV process.
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, “aircraft”), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is associated with showing compliance with regulations and also establishing and meeting internal company safety standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness. Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. This ongoing safety assessment process
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
This SAE Aerospace Recommended Practice (ARP) provides criteria for design and location of power supplies, controls, light fixtures, and associated equipment which are used to provide emergency illumination in transport aircraft, designed to comply with 14 CFR Part 25 (see Reference 1) for operation under 14 CFR Part 91 (see Reference 11) and 14 CFR Part 121 (see Reference 2), and also in compliance with FAA Advisory Circulars AC 25.812-1A (see Reference 3) and AC 25.812-2 (see Reference 10). It is not the purpose of an ARP to specify design methods to be followed in the accomplishment of the stated objectives.
Counterfeiting of refrigerants has seen a dramatic rise over the past decades. This rise can be partially attributed to global restrictions placed on production and use of refrigerants by the 1987 Montreal Protocol, the 1997 Kyoto Protocol, and the 2016 Kigali Amendment to the Montreal Protocol [1, 2]. These protocols and the amendment regulate the gradual phase-out and strict regulations on the use of refrigerants with high Ozone Depletion Potential (ODP) and high Global Warming Potential (GWP). These protocols require that older refrigerants be replaced with more environmentally friendly products and necessitate redesigned, updated, or replaced equipment to operate efficiently with these new refrigerants.
This SAE Aerospace Standard (AS) establishes supplemental requirements for 9100 and 9145 and applies to any organization receiving it as part of a purchase order or other contractual document from a customer. AS13100 also provides details of the reference materials (RM13xxx) developed by the SAE G-22 AESQ committee and listed in Section 2 that can also be used by organizations in conjunction with this standard.
This standard defines five CM functions and their underlying principles. The functions are detailed in Section 5. The principles, highlighted in text boxes, are designed to individually identify the essence of the related CM function and can be used to collectively create a checklist of “best practice” criteria to evaluate a CM program. The CM principles defined in this standard apply equally to internally focused enterprise information, processes, and supporting systems (i.e., Enterprise CM - policy driven, supporting the internal goals needed to achieve an efficient, effective and lean enterprise), as well as to the working relationships supported by the enterprise (i.e., Acquirer/Supplier CM - contracted relationship to support external trusted interaction with suppliers). In an Enterprise CM context there are several methodologies for principle use by the enterprise: The principles of this standard provide direction for developing enterprise or functional CM plans focused on
The purpose of this SAE Recommended Practice is to provide guides toward standard conditions for operating marine hydraulic transmissions where push-pull cable control is applicable. For control cable information see SAE J917.
This specification covers four series of electrical connectors (plugs and receptacles) with removable crimp contacts and accessories (see 6.1). AS81511 connectors are not recommended for new design. All AS81511 detail sheets that specified class D and/or H have been cancelled without replacement, therefore all class D and H requirements have been deleted from this specification. Electrical, mechanical and environmental features of these connectors include: a Environment resisting at sea level and high altitude. b Quick disconnect. c RFI/EMI (Radio Frequency Interference/Electromagnetic Interference) protection (includes shell to shell grounding spring members). d High density insert arrangements. e Low level circuit capabilities. f Scoop-proof. g Fluid resistant class provided. h High temperature class provided. i Several voltage service ratings available. j Individual contact release from the rear of the connector (series 3 and 4 only).
The scope of this SAE performance standard is to define the test method by which the direct solar and visible transmittance of safety glazing materials for road vehicles shall be measured. Adherence to this performance standard will facilitate writing, use, and referencing of reports by government, industry, and other organizations.
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls, as well as through “microleaks” at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation, where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
This SAE Recommended Practice establishes limits for electrical circuits on motor vehicle safety glazing materials.
Items per page:
50
1 – 50 of 212891